一、伸展树

伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入、查找和删除操作。

因为,它是一颗二叉排序树,所以,它拥有二叉查找树的性质;除此之外,伸展树还具有的一个特点是:当某个节点被访问时,伸展树会通过旋转使该节点成为树根。这样做的好处是,下次要访问该节点时,能够迅速的访问到该节点。但是,它并不是单纯的把访问的节点放

到树根就完了,它还能减少该节点的访问路径上的节点的深度。

假设想要对一个二叉查找树执行一系列的查找操作。为了使整个查找时间更小,被查频率高的那些条目就应当经常处于靠近树根的位置。于是想到设计一个简单方法,在每次查找之后对树进行重构,把被查找的条目搬移到离树根近一些的地方。伸展树应运而生,它是一种自

调整形式的二叉查找树,它会沿着从某个节点到树根之间的路径,通过一系列的旋转把这个节点搬移到树根去。

伸展树保证从空树开始的任意连续的m次对树的操作最多话费花费O(mlogn)时间(n是节点数);因此,它不存在坏的输入序列。

自底向上伸展树

伸展树包含之字形和一字型两种情形。

之字形情况

找到的节点是X时,类似平衡二叉树中的LR旋转的情况,可以将X变成树根;

一字型情况

找到的节点是X时,类似平衡二叉树中的LL旋转的情况,使用两次LL旋转时就可以将X变成树根;

P(X) : 获得X的父节点,G(X) : 获得X的祖父节点(=P(P(X)))。
Function Buttom-up-splay:
Do
If X 是 P(X) 的左子结点 Then
If P(X)是G(X)的左子结点
P(X) 绕G(X)右旋
Endif
X 绕P(X)右旋
Else If X 是 P(X) 的右子结点 Then
If P(X)是G(X)的右子结点
P(X) 绕G(X)左旋
Endif
X 绕P(X)左旋
Endif
While (P(X) != NULL)
EndFunction

自顶向下伸展树

在自底向上的伸展树中,我们需要求一个节点的父节点和祖父节点,因此这种伸展树难以实现。因此,我们可以构建自顶向下的伸展树。

当我们沿着树向下搜索某个节点X的时候,我们将搜索路径上的节点及其子树移走。我们构建两棵临时的树──左树和右树。没有被移走的节点构成的树称作中树。在伸展操作的过程中:

  1. 当前节点X是中树的根。
  2. 左树L保存小于X的节点。
  3. 右树R保存大于X的节点。

基本的zig旋转

类似LL旋转,将X的子树放到R树上。

zig-zag旋转

两次LL旋转,将Z变成树根,注意,第二次旋转B的位置是,变成X的右子树;

以上是左旋转的情况,它会把路径上的节点放到R树上,如果是右旋转,则它会把路径上的节点类似的挂到L树上。

合并

最后当找到目标节点时,合并L树、中树、R树。

只需要将目标节点当做树根,L树当做目标节点的左子树,目标节点的原左子树放到L树的右子树;同理R树作为目标节点的右子树,原目标节点的右子树作为R树的左子树。

二、B-树

定义:

一棵m阶B-树是拥有以下性质的多路查找树:

  1. 非叶子结点的根结点至少拥有两棵子树;
  2. 每一个非根且非叶子的结点含有k-1个关键字以及k个子树,其中⌈m/2⌉≤k≤m;
  3. 非叶子结点的关键字个数=指向儿子的指针个数-1;

  4. 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];

  5. 非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

  6. 所有的叶子结点都在同一层。

B-树的特性:

  1. 关键字集合分布在整颗树中;
  2. 任何一个关键字出现且只出现在一个结点中;
  3. 搜索有可能在非叶子结点结束;
  4. 其搜索性能等价于在关键字全集内做一次二分查找;
  5. 自动层次控制;

下图是一颗3阶B-树:

插入

删除

应用

  • B-tree索引是数据库中存取和查找文件(称为记录或键值)的一种方法。
  • 硬盘中的结点是B-tree结构的

实现

参考:https://www.roading.org/algorithm/introductiontoalgorithm/b-%E6%A0%91%E7%9A%84c%E5%AE%9E%E7%8E%B0.html

三、B+树

其定义基本与B-树同,除了:

  1. 非叶子结点的子树指针与关键字个数相同;
  2. 非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);
  3. 为所有叶子结点增加一个链指针;
  4. 所有关键字都在叶子结点出现;

B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;
B+的特性:

  • 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
  • 不可能在非叶子结点命中;
  • 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;
  • 更适合文件索引系统;

查找

应用

二叉树总结(五)伸展树、B-树和B+树的更多相关文章

  1. 剑指offer17:输入两棵二叉树A,B,判断B是不是A的子结构。(ps:我们约定空树不是任意一个树的子结构)

    1 题目描述 输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) 2 思路和方法 (1)先在A中找和B的根节点相同的结点 (2)找到之后遍历对应位置的其他结点, ...

  2. java实现哈弗曼树和哈夫曼树压缩

    本篇博文将介绍什么是哈夫曼树,并且如何在java语言中构建一棵哈夫曼树,怎么利用哈夫曼树实现对文件的压缩和解压.首先,先来了解下什么哈夫曼树. 一.哈夫曼树 哈夫曼树属于二叉树,即树的结点最多拥有2个 ...

  3. 红黑树(Red-Black Tree),B树,B-树,B+树,B*树

    (一)红黑树(Red-Black Tree) http://www.cnblogs.com/skywang12345/p/3245399.html#a1 它一种特殊的二叉查找树.红黑树的每个节点上都有 ...

  4. [转]B树、B-树、B+树、B*树

    题记:转一篇很直观介绍各类B树的文章. B树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树, ...

  5. 树(一)——线段树

    问题 现在有1~30这30个数,数N被抽上的概率正比于1/sqrt(N+1),求满足这个概率分布的随机数发生器. 思路 第一,如何解决这个"概率正比"问题. 第二,如何产生满足条件 ...

  6. bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 629[Submit][Stat ...

  7. BST树,B树、B-树、B+树、B*树

    BST树,B树.B-树.B+树.B*树 二叉搜索树(BST): 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树 ...

  8. B树、B-树、B+树、B*树都是什么

    B树.B-树.B+树.B*树都是什么 B树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右 ...

  9. 树-二叉搜索树-AVL树

    树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路 ...

随机推荐

  1. 【Windows Of CCPC HDU - 6708】【打表,找规律】

    题意分析 HDU - 6708 题意:给出一个整数k,要求你输出一个长和宽均为2^k^ 的符合要求的矩阵.比如k等于1时输出 \[ \begin{matrix} C & C \\ P & ...

  2. 基于python的mysql复制工具

    一简介 python-mysql-replication 是由python实现的 MySQL复制协议工具,我们可以用它来解析binlog 获取日志的insert,update,delete等事件 ,并 ...

  3. Kafka集群环境配置

    Kafka集群环境配置 1 环境准备 1.1 集群规划 Node02 Node03 Node04 zk zk zk kafka kafka kafka 1.2 jar包下载 安装包:kafka_2.1 ...

  4. 【2017cs231n】:课程笔记-第2讲:图像分类

    [2017cs231n]:课程笔记-第2讲:图像分类 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.n ...

  5. unity_小功能实现(碰撞检测)

    1.触发器Trigger:勾选IsTrigger属性 //当player刚进入触发区域的时刻发生触发检测,比如在靠近门的某个区域门一直处于开着状态 void OnTriggerEnter(Collid ...

  6. JavaScript 数据结构与算法之美 - 栈内存与堆内存 、浅拷贝与深拷贝

    前言 想写好前端,先练好内功. 栈内存与堆内存 .浅拷贝与深拷贝,可以说是前端程序员的内功,要知其然,知其所以然. 笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 JavaScri ...

  7. switch语句(下)(转载)

    之前我们介绍了在switch语句中使用整数类型和枚举类型的情况.这一部分继续介绍使用string类型的情况.string类型是switch语句接受的唯一一种引用类型参数. 下面来看一段C#代码. 代码 ...

  8. JS核心之DOM操作 上

    JS一个重要功能就是操作DOM, 改变页面显示. 目录: 1.基本概念 2.节点类型 3.节点关系 4.节点操作 基本概念 DOM全称为Document Object Model ,即文档对象模型,是 ...

  9. GO.Web服务

    Web基础 Web服务器的一般工作原理可以简单地归纳为: 客户机浏览器通过TCP/IP协议建立到服务器的TCP连接 客户端向服务器发送HTTP协议请求包,请求服务器里的资源文档 服务器向客户机发送HT ...

  10. codeforces 361 D. Levko and Array(dp+二分)

    题目链接:http://codeforces.com/contest/361/problem/D 题意:最多可以修改K次数字,每次修改一个数字变成任意值,C=max(a[i+1]-a[i]):求操作之 ...