问题描述

LG4395

BZOJ1369


题解

发现对于结点 \(x\) ,其父亲,自己,和所有的孩子权值不同,共 \(3\) 类,从贪心的角度考虑,肯定是填 \(1,2,3\) 这三种。

于是套路树形DP,设 \(opt[x][1/2/3]\) 代表以 \(x\) 为根的子树中,且 \(x\) 标为 \(0/1/2\) 的最小值。


\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std; template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch>'9'||ch<'0')) ch=getchar();
if(ch=='-') ch=getchar(),fh=-1;
else fh=1;
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
x*=fh;
} const int maxn=10007;
const int maxm=20007; int n;
int Head[maxn],to[maxm],Next[maxm],tot; int opt[maxn][4]; void add(int x,int y){
to[++tot]=y,Next[tot]=Head[x],Head[x]=tot;
} void dp(int x,int f){
for(int i=1;i<=3;i++) opt[x][i]=i;
for(int i=Head[x];i;i=Next[i]){
int y=to[i];
if(y==f) continue;
dp(y,x);
opt[x][1]+=min(opt[y][2],opt[y][3]);
opt[x][2]+=min(opt[y][1],opt[y][3]);
opt[x][3]+=min(opt[y][1],opt[y][2]);
}
} int main(){
read(n);
for(int i=1,x,y;i<n;i++){
read(x);read(y);
add(x,y);add(y,x);
}
dp(1,0);
printf("%d\n",min(opt[1][1],min(opt[1][2],opt[1][3])));
return 0;
}

BZOJ1369/LG4395 「BOI2003」Gem 树形DP的更多相关文章

  1. 【BZOJ-1369】Gem 树形DP

    1369: [Baltic2003]Gem Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 282  Solved: 180[Submit][Status] ...

  2. 【bzoj1369】[Baltic2003]Gem 树形dp

    题目描述 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小. 输入 先给出一个数字N,代表树上有N ...

  3. LiberOJ #6210. 「美团 CodeM 决赛」tree 树形DP

    题目链接:点这里 题解: 需要证明,所求的路径一定是全部权值都为1或者,路径上权值至多有一个为2其余为1且权值2在路径中央. 然后树形DP 设定dp[i][0/1] 以1为根的情况下,以i 节点下子树 ...

  4. [BOI2003] Gem - 树形dp

    结论 不同颜色数不会超过 \(O(\log n)\) 然后就是很简单的树形dp了 顺便复习一下树形dp怎么写 #include <bits/stdc++.h> using namespac ...

  5. bzoj 1369: Gem 树形dp

    题目大意 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小.N<=10000 题解 我们可以 ...

  6. BZOJ 1369: [Baltic2003]Gem(树形dp)

    传送门 解题思路 直接按奇偶层染色是错的,\(WA\)了好几次,所以要树形\(dp\),感觉最多\(log\)种颜色,不太会证. 代码 #include<iostream> #includ ...

  7. BZOJ1369:[Baltic2003]Gem(树形DP)

    Description 给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小. Input 先给出一个 ...

  8. loj#2002. 「SDOI2017」序列计数(dp 矩阵乘法)

    题意 题目链接 Sol 质数的限制并没有什么卵用,直接容斥一下:答案 = 忽略质数总的方案 - 没有质数的方案 那么直接dp,设\(f[i][j]\)表示到第i个位置,当前和为j的方案数 \(f[i ...

  9. 「洛谷5017」「NOIP2018」摆渡车【DP,经典好题】

    前言 在考场被这个题搞自闭了,那个时候自己是真的太菜了.qwq 现在水平稍微高了一点,就过来切一下这一道\(DP\)经典好题. 附加一个题目链接:[洛谷] 正文 虽然题目非常的简短,但是解法有很多. ...

随机推荐

  1. Jupiter 页面环境下使用pip无法安装(AttributeError: module 'pip' has no attribute 'main')

    异常: AttributeError Traceback (most recent call last) <ipython-input-5-880e5dfa627c> in <mod ...

  2. 「SAP技术」如何看Z移动类型是复制哪个标准移动类型而创建的?

    [SAP技术]SAP MM 如何看一个自定义移动类型是复制哪个标准移动类型而创建的? 比如项目上有一个自定义移动类型Z59,是复制551移动类型而定义的. OMJJ配置界面里,是有一个Ref字段.如下 ...

  3. [转]UIpath advanced certification dumps

    本文转自:https://dotnetbasic.com/2019/06/uipath-advanced-certification-dumps.html UiPath advanced certif ...

  4. Rsync实现文件的同步

    故事背景:我们公司是做新零售的,需要对发布的每台机器进行文件的同步更新,所以我这里做了一个小小的调研 技术调研:linux之间同步文件有两种方式rsync与scp. sync和scp在文件夹均不存在时 ...

  5. C++标准库之string类型

    stirng类型 简介: C++标准库提供的类型:string 长度可变的字符串 操作简单  仅为包含个人常用函数 头文件 string 类型与其它的标准库类型相同,都需要包含对应的头文件 #incl ...

  6. git结合项目基本使用

    学习博客:1,史上最浅显易懂的Git教程! 2,结合项目具体使用 3,常用命令快速查看 4,git stash 用法总结和注意点 一.git的工作原理和工作流程 Workspace:工作区 Index ...

  7. Java中dimension类详解

    Java中dimension类详解 https://blog.csdn.net/hrw1234567890/article/details/81217788

  8. C语言和其他语言的区别

    一.嵌入式开发中为什么选择C语言? 首先嵌入式是在已有的硬件基础上,移植操作系统,而现在操作系统的内核都是用C实现的 二.为什么用C语言开发操作系统内核? C语言有三大特点(优点): ①C语言具有出色 ...

  9. 《机器学习实战之第二章k-近邻算法》

    入坑<机器学习实战>: 本书的第一个机器学习算法是k-近邻算法(kNN),它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据 ...

  10. c博客06-结构体&文件

    1.本章学习总结 1.1 学习内容总结 结构体的定义.成员的赋值: 结构体的一般定义形式(单独定义): struct 结构名 { 类型名 结构体成员名1; 类型名 结构体成员名2; ... 类型名 结 ...