题目链接

problem

实际上就是对于给定的\(n\)求一个最小的\(x\)满足\(\frac{x(x+1)}{2}=kn(k\in N^*)\)。

solution

对上面的式子稍微变形可得\(x(x+1)=2kn\)。因为\(x\)与\((x+1)\)互质,所以将\(n\)质因数分解后,同种质因子肯定都位于\(x\)或\((x+1)\)中。\(10^{12}\)以内的整数质因数分解后种类不超过\(13\)种,所以可以暴力枚举每种质因子属于\(x\)还是\(x+1\)。

然后分别得到\(a\)和\(b\)。下面要使得\(bx=ay+1\)。扩展欧几里得求解即可。

PS

本题时限\(0.5s\),每次询问都\(\sqrt{n}\)质因数分解是会\(TLE\)的。所以先预处理质数。然后进行质因数分解。

code

//@Author: wxyww
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
#include<cmath>
#include<map>
#include<string>
using namespace std;
typedef long long ll;
const int N = 5000010;
ll read() {
ll x = 0,f = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}
while(c >= '0' && c <= '9') {x = x * 10 + c - '0',c = getchar();}
return x * f;
}
ll dis[N];
int prmjs,vis[N];
ll n;
ll js,cnt[15];
void fj(ll x) {
for(int i = 1;dis[i] * dis[i] <= x;++i) {
if(x % dis[i] == 0) {
cnt[++js] *= dis[i];
x /= dis[i];
}
while(x % dis[i] == 0) x /= dis[i],cnt[js] *= dis[i];
}
if(x != 1) cnt[++js] = x;
}
ll ans;
ll exgcd(ll a,ll b,ll &x,ll &y) {
if(b == 0) {
x = 1,y = 0;return a;
}
ll tmp = exgcd(b,a % b,x,y);
ll t = x;
x = y; y = t - a / b * y;
return tmp;
} int main() {
int T = read();
for(int i = 2;i <= 2000000;++i) {
if(!vis[i]) dis[++prmjs] = i;
for(int j = 1;j <= prmjs && 1ll * dis[j] * i <= 1000000;++j) {
vis[dis[j] * i] = 1;
if(i % dis[j] == 0) break;
}
}
while(T--) {
n = read() * 2;
js = 0;
for(int i = 1;i <= 14;++i) cnt[i] = 1;
fj(n);
ans = n * 2;
ll m = 1 << js;
for(int i = 0;i < m;++i) {
ll now = 1;
for(int j = 0;j < js;++j) if(i >> j & 1) now *= cnt[j + 1];
ll x,y;
exgcd(now,n / now,x,y);
y = y % now;
if(y >= 0) y -= now;
ans = min(ans,n / now * -y);
}
printf("%lld\n",ans);
}
return 0;
}

CometOJ10C 鱼跃龙门的更多相关文章

  1. Comet OJ - Contest #10 C题 鱼跃龙门

    ###题目链接### 题目大意: 给你一个 x ,让你求出最小的正整数 n 使得 n * (n + 1) / 2  % x == 0 ,即 n * (n + 1)  % 2x == 0 . 分析: 1 ...

  2. Comet OJ - Contest #10 C.鱼跃龙门

    传送门 题意: 求最小的\(x\),满足\(\frac{x(x+1)}{2}\% n=0,n\leq 10^{12}\). 多组数据,\(T\leq 100\). 思路: 直接考虑模运算似乎涉及到二次 ...

  3. Comet OJ - Contest #10 鱼跃龙门 exgcd+推导

    考试的时候推出来了,但是忘了 $exgcd$ 咋求,成功爆蛋~ 这里给出一个求最小正整数解的模板: ll solve(ll A,ll B,ll C) { ll x,y,g,b,ans; gcd = e ...

  4. CometOJ-[Contest #10]鱼跃龙门【exgcd】

    正题 题目链接:https://cometoj.com/problem/1479 题目大意 给出\(n\)求一个最小的\(x(x>0)\)满足 \[\left(\sum_{i=1}^xi\rig ...

  5. 代码规范之争——[个人Week2作业]

    这四个问题均是出自 http://goodmath.scientopia.org/2011/07/14/stuff-everyone-should-do-part-2-coding-standards ...

  6. [Week2 作业] 代码规范之争

    这四个问题均是出自 http://goodmath.scientopia.org/2011/07/14/stuff-everyone-should-do-part-2-coding-standards ...

  7. Kernighan《UNIX 传奇:历史与回忆》杂感

    Brian W. Kernighan 是一个伟大的技术作家,我买了他写的几乎所有书.他近些年的书我买的是 Kindle 电子版,不占地方. 以下是我手上保存的纸版书: Kernighan 的书大多与别 ...

随机推荐

  1. 基于webpack实现多html页面开发框架七 引入第三方库如jquery

    一.解决什么问题 1.如何引入第三方库,如jquery等 二.引入jquery方法 1.下载jquery.min.js放到assets/lib下面 2.安装copy-webpack-plugin,将已 ...

  2. OSG嵌入QT的简明总结

    目录 1.解决方案 2.存在问题 1) 警告提示 2) 多线程问题 3) 其他 1.解决方案 不得不说关于OSG的资料实在太零散了,搜索了很多关于OSG在QT下的解决方案,都是各有各的说法,有的说的不 ...

  3. netty解决粘包半包问题

    前言:开发者用到TCP/IP交互时,偶尔会遇到粘包或者半包的数据,这种情况有时会对我们的程序造成严重的影响,netty框架为解决这种问题提供了若干框架 1. LineBasedFrameDecoder ...

  4. Fiddler常用设置

    1.设置抓取HTTPS请求 勾选后弹窗添加证书确认框 点击yes后,弹出警告 点击是,成功添加证书 点击OK确认,设置成功了 成功抓取到HTTPS请求 2.自定义会话框,展示GET和POST请求 3. ...

  5. 基于C# 百度AI和科大汛飞语音合成SDK

    一.百度语音合成 百度语音合成C# SDK主要是基于Rest API,需要互联网调用HTTP接口,Rest API 仅支持最多512个汉字,合成的格式文件为MP3,没有其它的格式.如果想离线使用需下载 ...

  6. Oracle处理关于sysaux表空间爆满的问题---更新最新方法!!

    对于SYSAUX表空间而言,如果占用过大,那么一般情况下是由于AWR信息或对象统计信息没有及时清理引起的,具体原因可以通过如下的SQL语句查询: SELECT OCCUPANT_NAME ORDER ...

  7. 阿里云ECS服务器部署HADOOP集群(四):Hive本地模式的安装

    本篇将在阿里云ECS服务器部署HADOOP集群(一):Hadoop完全分布式集群环境搭建的基础上搭建. 本地模式需要采用MySQL数据库存储数据. 1 环境介绍 一台阿里云ECS服务器:master ...

  8. C++ std::forward_list 基本用法

    #include <iostream> #include <string> #include <forward_list> using namespace std; ...

  9. Java之属性集(Properties类)

    Properties概述 java.util.Properties类 继承于 Hashtable ,来表示一个持久的属性集.它使用键值结构存储数据,每个键及其对应值都是一个字符串.该类也被许多Java ...

  10. Goland安装

    Goland安装 http://c.biancheng.net/view/6124.html