02(b)多元无约束优化问题-最速下降法
此部分内容接02(a)多元无约束优化问题的内容!
第一类:最速下降法(Steepest descent method)
\[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\approx f({{\mathbf{x}}_{k}})+{{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }\]
要使新找到的一点${{\mathbf{x}}_{k}}+\mathbf{\delta }$的函数值小于原来点${{\mathbf{x}}_{k}}$的函数值,即:
\[f({{\mathbf{x}}_{k}}+\mathbf{\delta })-f({{\mathbf{x}}_{k}})={{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }=\left\| \nabla f({{\mathbf{x}}_{k}}) \right\|\cdot \left\| \mathbf{\delta } \right\|\cos \theta <0\]
其中$\theta $为梯度向量$\nabla f({{\mathbf{x}}_{k}})$和方向向量$\mathbf{\delta }$的夹角,由上式可见当$\theta =\pi $时$f({{\mathbf{x}}_{k}}+\mathbf{\delta })$
与$f({{\mathbf{x}}_{k}})$的差值在满足(8)式的情况下达到最大,即$\mathbf{\delta }$应取与梯度向量相反的方向$-\nabla f({{\mathbf{x}}_{k}})$。故此时使函数$f(\mathbf{x})$在点${{\mathbf{x}}_{k}}$下降速度最快的方向为:
${{d}_{k}}=-\nabla f({{\mathbf{x}}_{k}})$。
Step3:通过Step2确定下降方向${{\mathbf{d}}_{k}}$之后,$f({{\mathbf{x}}_{k}}+{{\alpha }_{k}}{{\mathbf{d}}_{k}})$可以看成${{\alpha }_{k}}$的一维函数,这一步的主要方法有(Dichotomous search, Fibonacci search, Goldensection search, quadratic interpolation method, and cubic interpolation method);所确定一个步长${{\alpha }_{k}}>0$,${{\mathbf{x}}_{k+1}}={{\mathbf{x}}_{k}}+{{\alpha }_{k}}{{\mathbf{d}}_{k}}$;
Step4: if走一步的距离$\left\| {{\alpha }_{k}}{{\mathbf{d}}_{k}} \right\|<\varepsilon $,则停止并且输出解${{\mathbf{x}}_{k+1}}$;else $k:=k+1$并返回Step2,继续迭代。
02(b)多元无约束优化问题-最速下降法的更多相关文章
- 02(c)多元无约束优化问题-牛顿法
此部分内容接<02(a)多元无约束优化问题>! 第二类:牛顿法(Newton method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\text{ ...
- 02(d)多元无约束优化问题-拟牛顿法
此部分内容接<02(a)多元无约束优化问题-牛顿法>!!! 第三类:拟牛顿法(Quasi-Newton methods) 拟牛顿法的下降方向写为: ${{\mathbf{d}}_{k}}= ...
- 02(a)多元无约束优化问题
2.1 基本优化问题 $\operatorname{minimize}\text{ }f(x)\text{ for }x\in {{R}^{n}}$ 解决无约束优化问题的一般步骤 ...
- 02(e)多元无约束优化问题- 梯度的两种求解方法以及有约束转化为无约束问题
2.1 求解梯度的两种方法 以$f(x,y)={{x}^{2}}+{{y}^{3}}$为例,很容易得到: $\nabla f=\left[ \begin{aligned}& \frac{\pa ...
- 无约束优化方法(梯度法-牛顿法-BFGS- L-BFGS)
本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法.BFGS 与 L-BFGS 算法. 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较 ...
- MATLAB进行无约束优化
首先先给出三个例子引入fminbnd和fminuc函数求解无约束优化,对这些函数有个初步的了解 求f=2exp(-x)sin(x)在(0,8)上的最大.最小值. 例2 边长3m的正方形铁板,四角减去相 ...
- 01(b)无约束优化(准备知识)
1.解方程转化为优化问题 $n\left\{ \begin{aligned}& {{P}_{1}}(x)=0 \\ & {{P}_{2}}(x)=0 \\ & \text{ ...
- 无约束优化算法——牛顿法与拟牛顿法(DFP,BFGS,LBFGS)
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法.之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的 ...
- 065 01 Android 零基础入门 01 Java基础语法 08 Java方法 02 带参无返回值方法
065 01 Android 零基础入门 01 Java基础语法 08 Java方法 03 带参无返回值方法 本文知识点:带参无返回值方法 说明:因为时间紧张,本人写博客过程中只是对知识点的关键步骤进 ...
随机推荐
- WPF之VirtualizingStackPanel.IsVirtualizing="False"
原文:WPF之VirtualizingStackPanel.IsVirtualizing="False" 相信从winform转到wpf的人都遇到过这样的困惑,在处理DataGri ...
- 【WPF】wpf用MultiBinding解决Converter需要动态传参的问题,以Button为例
原文:[WPF]wpf用MultiBinding解决Converter需要动态传参的问题,以Button为例 用Binding并通过Converter转换的时候,可能偶尔会遇到传参的问题, ...
- discuz电脑访问手机版域名怎么跳转到电脑版本
用discuz论坛访问手机版本的域名不会自动跳转到电脑版本,而是会跳转到域名+misc.php?mod=mobile体验很不好.现提供修改方法:打开论坛根目录找到文件./source/class/di ...
- dotnetspider
http://www.cnblogs.com/modestmt/p/5525467.html nuget :DotnetSpider2.Core
- 【Windows10 IoT开发系列】API 移植工具
原文:[Windows10 IoT开发系列]API 移植工具 Windows 10 IoT Core 中是否提供你的当前 Win32 应用程序或库所依赖的 API? 如果不提供,是否存在可使用的等效 ...
- PowerShell将Windows store应用程序安装为开发者模式
原文: PowerShell将Windows store应用程序安装为开发者模式 在本地部署Windows 商店应用程序时,我们会遇到Add-AppDevPackage.ps1脚本,这个脚本和所在安装 ...
- win32内存调用图
https://msdn.microsoft.com/en-us/library/ms810603.aspxhttps://www.codeproject.com/Articles/14525/Hea ...
- Windows下获取逻辑cpu数量和cpu核数量
代码可在Windows NT下正常运行 具体API说明请参照如下文档: GetLogicalProcessorInformation 点击打开链接 点击打开链接 点击打开链接 typedef BOOL ...
- java集合框架collection(6)继承结构图
根据<java编程思想>里面的说法,java集合又叫容器,按照单槽和双槽分为两类,Collection和Map,这两个都是接口. 一.Collection Collection下面又分了三 ...
- SpringCloud-分布式配置中心【加密-对称加密】
前面我们介绍了SpringCloud的分布式配置中心,我们将项目中的配置信息保存在git或者码云的仓库中,但是这样一些敏感信息就暴露出来了,比如数据库连接的账号密码等信息,这时我们最好能够对这些信 ...