此部分内容接02(a)多元无约束优化问题的内容!

第一类:最速下降法(Steepest descent method)

\[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\approx f({{\mathbf{x}}_{k}})+{{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }\]

要使新找到的一点${{\mathbf{x}}_{k}}+\mathbf{\delta }$的函数值小于原来点${{\mathbf{x}}_{k}}$的函数值,即:

\[f({{\mathbf{x}}_{k}}+\mathbf{\delta })-f({{\mathbf{x}}_{k}})={{\nabla }^{T}}f({{\mathbf{x}}_{k}})\cdot \mathbf{\delta }=\left\| \nabla f({{\mathbf{x}}_{k}}) \right\|\cdot \left\| \mathbf{\delta } \right\|\cos \theta <0\]

其中$\theta $为梯度向量$\nabla f({{\mathbf{x}}_{k}})$和方向向量$\mathbf{\delta }$的夹角,由上式可见当$\theta =\pi $时$f({{\mathbf{x}}_{k}}+\mathbf{\delta })$

与$f({{\mathbf{x}}_{k}})$的差值在满足(8)式的情况下达到最大,即$\mathbf{\delta }$应取与梯度向量相反的方向$-\nabla f({{\mathbf{x}}_{k}})$。故此时使函数$f(\mathbf{x})$在点${{\mathbf{x}}_{k}}$下降速度最快的方向为:

${{d}_{k}}=-\nabla f({{\mathbf{x}}_{k}})$。

Step3:通过Step2确定下降方向${{\mathbf{d}}_{k}}$之后,$f({{\mathbf{x}}_{k}}+{{\alpha }_{k}}{{\mathbf{d}}_{k}})$可以看成${{\alpha }_{k}}$的一维函数,这一步的主要方法有(Dichotomous search, Fibonacci search, Goldensection search, quadratic interpolation method, and cubic interpolation method);所确定一个步长${{\alpha }_{k}}>0$,${{\mathbf{x}}_{k+1}}={{\mathbf{x}}_{k}}+{{\alpha }_{k}}{{\mathbf{d}}_{k}}$;

Step4: if走一步的距离$\left\| {{\alpha }_{k}}{{\mathbf{d}}_{k}} \right\|<\varepsilon $,则停止并且输出解${{\mathbf{x}}_{k+1}}$;else $k:=k+1$并返回Step2,继续迭代。

02(b)多元无约束优化问题-最速下降法的更多相关文章

  1. 02(c)多元无约束优化问题-牛顿法

    此部分内容接<02(a)多元无约束优化问题>! 第二类:牛顿法(Newton method) \[f({{\mathbf{x}}_{k}}+\mathbf{\delta })\text{ ...

  2. 02(d)多元无约束优化问题-拟牛顿法

    此部分内容接<02(a)多元无约束优化问题-牛顿法>!!! 第三类:拟牛顿法(Quasi-Newton methods) 拟牛顿法的下降方向写为: ${{\mathbf{d}}_{k}}= ...

  3. 02(a)多元无约束优化问题

    2.1 基本优化问题 $\operatorname{minimize}\text{    }f(x)\text{       for   }x\in {{R}^{n}}$ 解决无约束优化问题的一般步骤 ...

  4. 02(e)多元无约束优化问题- 梯度的两种求解方法以及有约束转化为无约束问题

    2.1 求解梯度的两种方法 以$f(x,y)={{x}^{2}}+{{y}^{3}}$为例,很容易得到: $\nabla f=\left[ \begin{aligned}& \frac{\pa ...

  5. 无约束优化方法(梯度法-牛顿法-BFGS- L-BFGS)

    本文讲解的是无约束优化中几个常见的基于梯度的方法,主要有梯度下降与牛顿方法.BFGS 与 L-BFGS 算法. 梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较 ...

  6. MATLAB进行无约束优化

    首先先给出三个例子引入fminbnd和fminuc函数求解无约束优化,对这些函数有个初步的了解 求f=2exp(-x)sin(x)在(0,8)上的最大.最小值. 例2 边长3m的正方形铁板,四角减去相 ...

  7. 01(b)无约束优化(准备知识)

    1.解方程转化为优化问题 $n\left\{ \begin{aligned}& {{P}_{1}}(x)=0 \\ & {{P}_{2}}(x)=0 \\ & \text{   ...

  8. 无约束优化算法——牛顿法与拟牛顿法(DFP,BFGS,LBFGS)

    简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法.之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的 ...

  9. 065 01 Android 零基础入门 01 Java基础语法 08 Java方法 02 带参无返回值方法

    065 01 Android 零基础入门 01 Java基础语法 08 Java方法 03 带参无返回值方法 本文知识点:带参无返回值方法 说明:因为时间紧张,本人写博客过程中只是对知识点的关键步骤进 ...

随机推荐

  1. 自定义函数Function

    定义 对于SQL Server来讲,我们声明一个变量的方式是用@变量名,而且相对于编程来讲,SQL Server声明的方式跟我们开了个玩笑,是先变量后面才是类型.对于需要传参跟不需要传参的方式,其实跟 ...

  2. XF 主从页面

    using System; using Xamarin.Forms; using Xamarin.Forms.Xaml; [assembly: XamlCompilation (XamlCompila ...

  3. SICP 1.9-1.10

    1.9 2^102^162^16 2n2^(n)2的(n-1)层次方(每一层都是2次方) 比如 h(4) = 2^(2^(2^2)) = 2^16

  4. 在2005年,Unicode 的第十万个字符被采纳且认可成为标准之一(超过这65535范围的Unicode字符,则需要使用一些诡异的技巧来实现)

    在计算机科学领域中,Unicode(统一码.万国码.单一码.标准万国码)是业界的一种标准,它可以使电脑得以体现世界上数十种文字的系统.Unicode 是基于通用字符集(Universal Charac ...

  5. 【Gerrit】Performance Cheat Sheet

    首先说下做这件事情的主因,组内有人说Project repo sync有点慢,废话不多说,直接上图. 相关官方文档参考链接: 我的数据: ~/review_site/logs# fgrep " ...

  6. svn文件合并

     cd 目标目录svn merge -r 开始版本号:结束版本号 源目录或单个文件URL或svn merge 源目录或单个文件URL

  7. layui弹出框打开第二次select内容无法显示问题

    今天, 在使用layui弹出框的时候, 第一次进入select内容加载是正常的, 将弹出框关闭再次进入后select下拉框内容为空, 经排查是因为每次弹出窗口z-index都会改变, 弹出框的z-in ...

  8. 芒果TV For Windows10 成长历史 & 迭代历史 & 新闻报道

    芒果TV 是国内领先的基于Windows10操作系统并支持Windows10全系列设备的视频应用和内容服务商. Win10商店版<芒果TV>是湖南快乐阳光互动娱乐传媒有限公司专门为Wind ...

  9. Android零基础入门第20节:CheckBox和RadioButton使用大全

    原文:Android零基础入门第20节:CheckBox和RadioButton使用大全 本期先来学习Button的两个子控件,无论是单选还是复选,在实际开发中都是使用的较多的控件,相信通过本期的学习 ...

  10. GetParent、SetParent、MoveWindow - 获取、指定父窗口和移动窗口,IsChild - 判断两个窗口是不是父子关系

    提示: SetParent 应该 Windows.SetParent, 因为 TForm 的父类有同名方法. //声明: {获取父窗口句柄} GetParent(hWnd: HWND): HWND; ...