1.数据预处理 二值化

import numpy as np
from sklearn import preprocessing X = np.array([[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]])
binarized = preprocessing.Binarizer().fit(X)
print(binarized.transform(X))

2.数据预处理 Onehot处理离散数据

import numpy as np
from sklearn import preprocessing Y = np.array([[0, 1, 0], [1, 0, 1], [2, 2, 1], [3, 1, 0]])
enc = preprocessing.OneHotEncoder()
enc.fit(Y)
print(enc.transform([[3, 0, 1]]).toarray())

3.综合处理文本离散数据 Onehot处理离散文本数据

import numpy as np
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder # 原始离散数据,其中国家有四种数据,职业有三种数据,性别有两种数据,即[2,3,4]
Y_label = np.array([['from China', 'Student', 'Male'], ['from USA', 'Teacher', 'Female'],
['from UK', 'Engineer', 'Female'],['from AU', 'Student', 'Male']]) # 将离散文本转换为数字表示
le_from = LabelEncoder()
le_job = LabelEncoder()
le_gender = LabelEncoder()
le_from.fit(np.array(['from China', 'from USA', 'from UK', 'from AU']))
le_job.fit(np.array(['Student', 'Teacher', 'Engineer']))
le_gender.fit(np.array(['Male','Female'])) # 替换原数据
Y_label[:, 0] = le_from.transform(Y_label[:, 0])
Y_label[:, 1] = le_job.transform(Y_label[:, 1])
Y_label[:, 2] = le_gender.transform(Y_label[:, 2]) # 使用OneHot编码数据
enc = preprocessing.OneHotEncoder()
enc.fit(Y_label)
print(enc.transform([[3, 0, 1]]).toarray())

scikit-learn杂记的更多相关文章

  1. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  2. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  3. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  4. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  5. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  6. Linear Regression with Scikit Learn

    Before you read  This is a demo or practice about how to use Simple-Linear-Regression in scikit-lear ...

  7. 如何使用scikit—learn处理文本数据

    答案在这里:http://www.tuicool.com/articles/U3uiiu http://scikit-learn.org/stable/modules/feature_extracti ...

  8. Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

    所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的 ...

  9. 机器学习框架Scikit Learn的学习

    一   安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...

  10. Python第三方库(模块)"scikit learn"以及其他库的安装

    scikit-learn是一个用于机器学习的 Python 模块. 其主页:http://scikit-learn.org/stable/. GitHub地址: https://github.com/ ...

随机推荐

  1. UVa 11400 Lighting System Design(DP 照明设计)

    意甲冠军  地方照明系统设计  总共需要n不同类型的灯泡  然后进入 每个灯电压v  相应电压电源的价格k  每一个灯泡的价格c   须要这样的灯泡的数量l   电压低的灯泡能够用电压高的灯泡替换   ...

  2. 图像金字塔(pyramid)与 SIFT 图像特征提取(feature extractor)

    David Lowe(SIFT 的提出者) 0. 图像金字塔变换(matlab) matlab 对图像金字塔变换接口的支持(impyramid),十分简单好用. 其支持在reduce和expand两种 ...

  3. 从入门机器学习的零单排:OctaveMatlab经常使用绘图知识

    OctaveMatlab经常使用绘图知识 之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错,算是入门了.这次打算以该课程的作业为主线,对机器学习基本知识做一下总结.小弟 ...

  4. wpf CefSharp 与 js交互

    原文:wpf CefSharp 与 js交互 通过 NuGet 获取 CefSharp.WpF 组件.  xmlns:cefSharp="clr-namespace:CefSharp.Wpf ...

  5. Angular route传参

    从 router-link-page1 跳转 router-link-page2 和 router-link-page3 通过自定义路由 设置router-link-page2的路由后有3个参数,pa ...

  6. HDU 2686 Matrix 3376 Matrix Again(费用流)

    HDU 2686 Matrix 题目链接 3376 Matrix Again 题目链接 题意:这两题是一样的,仅仅是数据范围不一样,都是一个矩阵,从左上角走到右下角在从右下角走到左上角能得到最大价值 ...

  7. asp .net core 使用spa

    要求 .net core 2.1 引用包 Microsoft.AspNetCore.SpaServices 先在angular目录下执行 npm i npm run build 关键代码 servic ...

  8. WPF特效-粒子动画

    原文:WPF特效-粒子动画 WPF实现泡泡龙小游戏效果.     /// -Ball to Ball Collision - Detection and Handling    /// http:// ...

  9. MySQL半同步复制搭建

    默认情况下,MySQL 5.5/5.6/5.7和MariaDB 10.0/10.1的复制是异步的,异步复制可以提供最佳性能,主库把binlog日志发送给从库,这一动作就结束了,并不会验证从库是否接收完 ...

  10. 用JavaScriptSerializer解析JSON

    引用System.Web.Extensions using System.Web.Script.Serialization; var serializer = new JavaScriptSerial ...