gnuplot: 一种更为简洁的曲线,柱状图绘图软件
gnuplot: 一种更为简洁的曲线,柱状图绘图软件
Zhong Xiewei
Wed Jun 25
gnuplot简单介绍
关于gnuplot的简单性认识可以通过百度百科,上面介绍了在windows以及linux下如何安装该命令行交互式绘图工具。该工具的使用使得数据处理和图形绘制,成为了两个相对独立的内容,可以更好的将注意力集中到数据处理或是图形的绘制。
各种绘图示例
在一般的数据处理中经常需要绘制的图形有以下几类:
- 散点图
- 曲线图
- 柱状图
另外经常还会改变图形的各种属性,如:文字大小,曲线大小,曲线颜色,散点类型,散点大小,坐标刻度,坐标轴标识,添加误差bar,设置图形大小,图形分辨率,在图像中添加文字,图像绘制,colorbar设置等等。
下面先来介绍一下线的粗细,点的类型,箭头的方向,文字位置等的示例内容。
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAiIAAAE/CAIAAAD0dj+lAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAB3RJTUUH3gYZDCQMt/VuowAAABl0RVh0Q29tbWVudABDcmVhdGVkIHdpdGggR0lNUFeBDhcAACAASURBVHja7J13XBTX2oAfEAQpShcRBRti7wVLUFA0xnKvIhrFxMQbFROj3hg/YhA1mNjwGkusUUzUaGILisQW0CixJbGiiA1EgygCSgSV9v0xu8sCS1nqLp7nN3/Mnj1zyjtn5p3T3lfH2NgYgaBak5mZqaenV2y0tPv3jezthbgE2siZM2c0tmx6wD///CNukqAa8+eff3bq1KnYaCbiWRBoLVevXtXYsumK2yOo9pRExwgEAqFmykznzuzcWQXXCgQCgVAzlUHr1uzeXW7RSsGsWZT7V21ZSltxNRXkJSIiQghBIKgq9LS+Bjk5ZGdTo0bxMb28xP1+PUlMTBRCEAi0pzfz44+5fYIJEzA05MULgLVr8fDg/n2srNi/HyA7m379mDQJYOpUoqOZMgVHR6ZMKTTxgtGePmXyZBo0wMYGb2+SkmQxnZ3x98fFhaZN+eMPnJ0JDKRbN4yM6N2b+HjmzsXaGltbNm+WXaI88OXszPz59OlDq1Z060ZUlCx86VKcnDAxoVEjAgOLEUXJSxsYiIMDZmbY2bFsmRoCEZQHw4YNK0m0mkJSAoFGqJm+fbl0ieRkgF9/xd4eaUTi119xd8fenqAg3n+fuDgWLuTRI1asAFi1Cicn1qwhJoY1awpNvGA0b2+Sk7l0iZgYdHWZPDk3cnAwBw5w+zZduwJs2cLWrTx+jIEBvXphbMz9+2zezIcfovJjNjSU4GAiI/HwYPp0WWCDBhw5Qmoqu3axcCG//FKUKEpY2mvXCAggPJyUFCIjcXdXQyCCSiRJiEAgqADUHzSzsaFFC8LDadcO4L33+PVX3NwID8fXF2DIEMaN4803iYvjzBkMDUtfurt3CQ0lMRFzc4DFi2nQgFevqFkTwMcHKysAHR2Ajz/GyQng7bfx92fWLIBBgzAzIzISV9f8ifv4UKcOwNChrFsnCxw9OrfrM3o04eG8+WZZS6uvT2YmFy5gbY25uexfQSUSGxvr4OAg5CAQaElvBnB3JyyMsDDc3WXnFy+Sk0PHjrIIU6Zw7RpDhtCiRZlKFxMD0KEDjo44OuLigokJ8fGyf+vXzxPZzk52YmxMvXq54cbGpKaqSFxSUUCtWrkRfv6Z3r1p2BAHB7Zv5/Hjcihts2YEBbFyJXXr4uqKBu+iqq6EhIQIIQgE2tObAdzc+L//IzGRoUPp3JnoaPbto08fdHUBMjN5913GjCEkhGPH6NdPrtFKptKUozk4UKMGkZGoNFUgdWLKkfh4vLw4cgRXV3R0mDpVtX4qRWm9vPDyIj2dpUsZOZK4ODUEIigzH374oRCCQKBVvRlXV27e5NAh3NzQ06NHD1askE05AH5+ZGQQFMSaNXh7k5AgC7e15caN4hNXjta4Mf36MXGiLJGEBPbtq0BhpKaiq0ubNujoEBvLrl3lU9qoKMLCePkSQ0MsLVFYPSmhQAQCgeC1UzN16tCpE/XrY2sL4O7Os2e4uQEcPsy6dezcib4+Y8YwaBDjxpGdDeDry5YtmJvz7rtFJZ4v2o4dWFrStSumpvTqxblzFSgMJyf8/OjRg169mD6dAQOKv6QkpU1Px9cXGxusrNi+nR07VF8rqDCysrKEEATqsmXLFhcXFyMjo6ZNmwpplAUdY2NjYcdJUL2plZ5eo1atfIE1xdIyQZGEhISkp6dHR0cHBQXdunVLw0uryTbN9ERjElR70gvoGIGgWAYPHiz1aYQoyoiYhRYIBAKBUDOCMuAMlbOetzPs1P4sKpOkpCR3d3czMzNPT8+dO3e2b99eVs3OnXfKLVYon5eEU6dO2UqTpmUUtZr5vs5YWFiYlBkLC4vqKh8xaCYoPa1hHnjKf86CDhpZzq+++mr27NkaWLCNGzcaGxsnJyfr6OhER0d/+umnolFVFVu2bHnvvfcAAwODF5IBLXU+F4QARW9GUBl4QTONLJiPj49mSuzu3bstW7bU0dEBnJycxo4dK1pRVTF+/PicnJycnBx1dYxAqJnXi0BwADOwg2VK4TehNxhDN5BbCSUePMEaGsAnID1bP4LCWcIEMJSHrwWPvHlNhWiYAo4g2f5UHtFKhknQEGpDF4gtvHgqYy4FJzCBRlCYBdOnMBkagA14F7lszFwjDfxMmDBh+/bta9eudXR0dHR0tLa2VgyaFcbTp08nT57coEEDGxsbb29vxUd0bGxs//79zczM2rZte/78eZXXOjs7z549+4033ujQoYOrq2t0dLSsGcTHe3p6WltbN2jQ4JNPPin4kl25cmX37t0VP8PDw62srF69eiWpSWnQr23btsuXL1cM1hWWprOz8/z58/v06dOqVatu3bpFyU3WBgYGOjg4mJmZ2dnZLVsmaxqHDh1aIVlErCKysrJevHiRkZEh6Z6XL1+KN4xQM6871yAAwiEFIsFd6a9vYT0kQ2uQWwllBBjBXTgN4eAHQF+4BMkA/Ar2ECE/d8+b3SpwgjUQAwVtf46CeDgHKbABjAovXsGYQAM4AqmwCxaCSgum3pAMlyAGdGGytt2vTZs2jRo1ysfHJyYmJiYmZtWqVcVe4u3tnZycfOnSpZiYGF1d3clyS7Kenp5NmjR5+PDhzz//vH79+sIuP3DgwP79+y9cuDBq1KihQ4dmZmYCI0aMMDIyunv37unTp8PDw/38/ApmeunSpWvXrkk/N2/e7O3tXbNmzZycHE9Pz1atWiUkJISEhGxWmEIvMs3Q0NDg4ODIyEgPD4/p06cD165dCwgICA8PT0lJiYyMdJdv9D516tTWrVur8AatXbu2Vq1aEydOvHPnTq1atYRZPKFmBOhDJlyAVDAH5Q/jadASasIH8CcAN+A0fA0mYA8BIL0kbKAFhMNtAN6DXyEHwguomSK4DUfhW7AFXegA1oUUT2VMYDQ4gg50htEQXnC4CUJhHViAESyGvfCqkPJ8//331eD+3r17NzQ0dN26dRYWFkZGRosXL967d++rV6+ioqIuXLiwdOlSQ0PDxo0bT1eYGy/A5MmTzczMpJNHjx6dPXv2xo0bp0+f/vrrr01MTOzt7QMCApS1hYSFhcXw4cOl8GfPnu3Zs2fChAlAVFTU5cuXFy5caGBg0LBhwxkzZkjxi07Tx8enTp06wNChQ//8809AX18/MzPzwoULqamp5ubmii7dggUL/vjjjyoU+EcffZSjxMOHD8VLRqiZ151mEAQroS64grKFTrlVUUxAMtN2H+qAYmlLE0iGNADcIQzCwF1+fhFyoGOJSxILtcGmBMVTGRP4GXpDQ3CA7VDQgmkMAB3AERzBBUwgvpDydOzYsRrc35iYGKBDhw7SIJuLi4uJiUl8fPyDBw+sra1NTU2laEVsWVcMaunq6trY2Ny/f//+/ft16tRRrHFq0qRJcnJyWlpavgv/85//bNu2LTMzc8eOHa1atWrTpg3w999/W1lZGcst+DVs2FA6KTpNK7nJ2lq1aqWmpgLNmjULCgpauXJl3bp1XV1dzwjbskLNCDQZLzgBT8AdRhYZ0x6eygfHgDtgLh+wcoNf5aNknSEa9kEfVW2lsNbjAM9U6YaCxVMZMx68IABiIRbGQY6qLGpAJMTIjxQobFCjdevW1eDmOjg41KhRIzIyMkZOSkqKg4ND/fr1k5KSMjIypGhFfHTfvi31UXnx4sWDBw/s7e3t7e2fPn2anCxrCHfu3DE3NzcyMsp3YZ8+fUxNTQ8ePBgUFCR1ZYD69esnJiY+f/5c+nnv3j1Z0ypZmnkahpfXiRMnnjx54u7uPnLkSPEgCzUj0FCiIAxegiFYFrdW3Qm6wwx4Dg/AH96T/+UKN+EQuIEe9IAVhYyY2YJK259NwAM+gATIhovwuJDiqYyZCrrQBnQgFlRaMG0M/WAiSJZZE2Bfdb+/jRs37tev38SJExMSEoCEhIR9+/YBzZs3b926tTRbnpaWtnr16sJSWLt2bVRU1KtXr/z8/Ozs7Lp16+bk5NS9e/cZM2Y8f/78wYMH/v7+0qLefOjo6EyYMMHf3//y5ctvv/22FNi8efO2bdt+9tlnL1++jIuLW758uaxplSzN3HYbFRUWFvby5UtDQ0NLS0s9uW3ZKl8CIBBqRpCfdPAFG7CC7bCjyMg6sBuegSN0hd6wQP5XHegE9cFWPob2DNxUJeILW8AcCtr+3AFW0BHMYCKkFV68gjGdwA96QC+YDoVZMN0BltAVTKEXFGFUNSwsrHrc4h07dlhaWnbt2tXU1LRXr17nzp2TdMDu3bsPHTrUqVMnDw8PDw+Pwi6fNGmSt7e3tbX12bNng4OD9fT0pGufPXvm6OjYtWvX3r17L1iwQOW148ePv3bt2ogRI6SZFUW+kZGRNjY2b731lre3t4GBgSK8JGnK2m16uq+vr42NjZWV1fbt23fIbctW+RIAQXkhTGcKqj+HDh0aOHDgay4EZ2fnwMBAyU5XKcjIyLC1td29e3ffvn1VRtiwYcPWrVtPnjwp2luVoMmmM0VvRlD9ETqmjOTk5KxZs8bOzi6fjjl79uydO3eA69evL1myZLTCx7lAINSMQCAoOcbGxoGBgQV35MTFxbm7u9euXXvQoEFjxoyZNGlSdap1RkbGRx99ZG5uXqdOnffffz89PV20hNIhBs0E1Z/o6GgnJychB4FazJ49e9++fb/88ouBgcGwYcM6d+68Zs0ajS2tGDQTCKoSMWEgKAWbNm2aPXu2o6NjvXr15s2b99133wl7M0LNCASqUWz1EAhKyMOHDx89etShg8zmeIcOHdLS0hQbjwRCzQgEAkGZkCwUKFZvS0Z6nj17pjLy//73P8Wu2J9++kkyogNEREQEBwdL57Gxsd988410npWV9dlnnyku/+qrrxS7WQuj6L1HGo6YmxFUf9LS0orehV7t+ftvCjd1ph6WlnzzDbrV/QP14cOH9erVu3LlimRCIj4+3s7OLjIysmXLlppZYE2emxFuzQTVn6VLl86dO/d1lsDMmezaVW6ptW9P9VpTpgJbW1tra+uLFy9KaubixYtGRkZNmjQRT5PozQgEgvycPImrKzk55ZaghQXR0VhaVnO5zZ49Ozg4ODQ01MDA4F//+leHDh3Wrl2rsaUVK80EAkHVkJ3NtGnlqWOApCSKNB9TTZA8sLVr187JyalFixYKf2sC0ZsRCAS5BAXx/vvln6yeHhcuUC0sX1cTRG9GIKhKXtuJmWfPUFrQVJ5kZiJ3YyYQCDUjeO3x9fV9PSu+cCEJCRWV+LFjhISIxiUoHjFoJhBUT27epHVrXr2qwCyaNCEyEgMDIeyqRwyaCQSCymbWrIrVMcDt26xaJSQtEGpG8NqzcePG163KR47w88+VkdEXXxAfL5qYQKiZiuPUKWxtVYQ7O5dp3LqMlwvy0qdPH/VuX0nuRefO7Nypmbe1MufnU1OZM0c0MYFmqpk+fdDR4cCB3JCffkJHh9fTA1Xr1uzeLZpjBcmwWbNm5Z/drFl06qSZt2/DBq5dq7zsgoI4f746tqgtW3BxwciIpk3F41UWqtTYjLMzmzYxZIjs56ZNODuLW6JB5OSQnU2NGtpRzkrGy0szhf/kSQV3L+o8xf6+ckA2fPA127aho6NeStZY22Cjue3Kyor//pfoaIKCqr4wXbporzKv0kEzT09++0224vLePf76i3/9K/ff+Hg8PbG2pkEDPvmEFy9y7/2ZM7Lz48ext5edBwbi4ICZGXZ2KPbrPn3K5Mk0aICNDd7eJCWpKMbSpTg5YWJCo0YEBubRgvPn06cPrVrRrRtRUbLw2Fj698fMjLZti7rxN2/SuzfGxnmuVVmpqVOJjmbKFBwdmTIlTyKJiXTvzqRJZGWprsvKlXTvnhs/PBwrK9nMr0qBlLDi/v64uNC0KX/8USIZqsyrsDvl7Mzs2bzxBh064OpKdHQx4YW1BOVyurjkl6FSsUPd3HKLXcLbV+ytVAyaFbx9hw6xYoUaSeX79lIWfr6/AgPp1g0jI3r3Jj6euXOxtsbWls2bFbECAlTfovJBJ4cRexi5K99xyWnXvMhdu1Dv2Ma2V7zS3Lfj4MGMHEn9+hpRmOvXxaBZqTA2ZvhwvvtO1vEeMybP0sgRIzAy4u5dTp8mPBw/v6KSunaNgADCw0lJITISd3dZuLc3yclcukRMDLq6TJ6s4toGDThyhNRUdu1i4UJ++SX3r9BQgoOJjMTDI9fCracnTZrw8CE//0wBt7W5fPst69eTnEzr1rnXqqzUqlU4ObFmDTExKLvnu32bHj146y3Wr6dGDdV18fbm0qXcIZLNm/H2pmbNQgVSwooHB3PgALdv07Vr8TIsSV75OHCA/fu5cIFRoxg6lMzMosKLaAmKcp49m1+GSsWupaeXW+wS3r5ib6WCgrfv1Cm2bi1NUgWFX3AYZ+tWHj/GwIBevTA25v59Nm/mww9JTASuXkVubL5iaHGdhvdU/nP0KBkZ6iX2jGe/87sYNaj2VPUSgPffZ/NmsrMJCkLZ99SNG5w+zddfY2KCvT0BAcrfayrQ1yczkwsXSE3F3Jz27QHu3iU0lHXrsLDAyIjFi9m7V8Uaz9GjcXRER4fOnRk9mvDw3L98fJAcTgwdiuRDIiqKCxdYuhRDQxo3Lsq6+rRptGxJzZp88IHsWrUqdf48b7zB7NmyEZDC6mJhwfDhsnSePWPPHpkYVQpErYpbWQHExBQvw5LklY/JkzEzk508esTZs4WGFy00RTnzjdfkFVff776TFbvkt6/oW1k0Cxbk74iolVRhlQI+/hgnJ4yNefttXrxg1iwMDBg0CDMzIiOBGTNyVXb5o5dJ/6OF6oxnRESonWQEESmkaP171MICE5OyHhYWqsfKpH+fP5eddOki1Iya9OiBjg7z5mFtTdu2ueH371OnTq7cmzQhOZm0tELTadaMoCBWrqRuXVxdZWM1MTEAHTrg6IijIy4umJioWH3588/07k3Dhjg4sH07jx/nGZyVqFWL1FSABw+wtsbUVBZexNygnZ3sxMREdq1alVq/nkaNGDNG9rOIuvznP2zbRmYmO3bQqhVt2hQqkJJXXDFQUBIZliSvfCjWd+nqYmPD/fuFhhcttMIGNAordslvX9G3stSUJKkiRmkUlxsbU69enoGB1NSDBzl2rEKf1t8xL8r7VkQEKWqqjAwyjnEMbScpiX/+Keuhcqzz/HnZv8bGshMtnKHRgAXN77/PggXkc6Nrb8/Tpyg8yt25g7k5kmcqE5Pc0fnExNxLvLw4cYInT3B3Z+RIAAcHatQgMpKYGNmRkoKDQ56M4uPx8iIggNhYYmMZN64YY7b165OUlDs6IHeZVyKKqFRBL1GrVmFiwvDhSO7Hi6hLnz6YmnLwYP4eYUGBlLziiu/oksiwsLwKu1PSeKDEixc8eJA7bVMwvAih5fveV5Zh3mJf3r9fVuyy3L6iHqNyfY7UnUkH4GWGbnk5LlONaSq9ThUdJTOzNHruKldjiRUjS2LQrCKZOJHQUMaNyxPo5ET37syYwfPnPHiAvz8KH6UdOxIaCpCWljuTERVFWBgvX2JoiKUlenoAjRvTrx8TJ8pWGSQksG9f/txTU9HVpU0bdHSIjS3e91Pz5rRuLZvgTUtj9Wo1alpEpWxtuXEjT+RatQgORleXoUNJTy+qLjo6TJiAvz+XL/P220UJpBQVL4kMC8tL5Z2SWLuWqChevcLPDzs7unUrNLwIoRXsISlkmLfYl0+elBW7iNvn50fnzqVsw/luXxFLACqMbw463rpVkRn0O0bN4qfrIyOJVV9lHOJQNtka93bMyuLFCzIyyMnhxQvZB19V0aKFUDNloE4dBg7E2Dj/B93u3Tx7hqMjXbvSu3eug4slS4iIoE0bPDxQbLtLT8fXFxsbrKzYvp0dO2ThO3ZgaUnXrpia0qsX586pePX7+dGjB716MX06AwYU/6W5ezeHDtGpEx4eeHio95VaWKV8fdmyBXNz3n03N76BAXv2ULs2gwbxzz9F1WX8eK5dY8QI5K7LCxVIKSperAwLy0vlnZKYNAlvb6ytOXuW4OBczVQwvAih5SOfDJWK7f3117JiF3H77t2jd+9StuF8WRexBKBieJhlPX+HUwVmYH+ftpdLqjMOqe3eJp74i1zUuLfj2rXUqsXEidy5Q61aKjrxlYk2b00SpjOrBRkZ2Nqyezd9+2pBaaWFuYMHlzS80r4WT5zAxkYb7/+kSWzYUHEviRwmbMq3V6ZoBg/O3bpaQowxnspUQwzF01w6hOlMQUWSk8OaNdjZaYeOqQqSSrKR5Pp1LdUxt24VswyzrLS5opaOAY4fJytLvUye8/w3fhNttVoi1Iz2Y2xMYGBJt4C8lmyowE/9qsfBgSZNKiz1mq/op/a0fsOGpbEdcZaziSSK5lr9EINmAoHWc/BghY019g3H9YRaV+jr89FH1K5dmtyccBrDGHFDS4EYNBMIBBXIW29VjMlZsxR6qr3l0sWllDoGiCb6JjfFDa1mCDUjeF3o3LnzzuJM9z958qRfv34WFhaenp5lTErdIiUlJbm7u5uZmXl6eu7cubN9SYwpyDl16tT587319ctbZP2PoqeeUYE6dejVq0x5HuZwFlmiuQo1IxBoE76+viWM+e233xoZGT158mT37t2tW7feXYh5/1mzZnVSdykVAPnSVE5n48aNxsbGycnJu3fv7tix46effqpWynp6N1Va7Cs9jjG0ilT3Ijc3yqjtEkk8xznRaIWaEQi0ia+++qqEMe/evduyZUud4vbhe3l5lYsPG+V0lLN2cnIaO3asuqnNn59rHanML4ZsBh5S96KGDfNYjCo1xzn+D1U/YTyDGS1paYSRI45++Ik+llAzAkHhrbyAMZinT59Onjy5QYMGNjY23t7e0ornCRMmbN++fe3atY6OjhYWFtHR0VOmTHF0dJySzztD3sEuKyurM3IzbsePH7eXG84JDAx0cHAwMzOzs7NbtmwZMHXq1HxpKtJRztrR0dHa2loxaKayqEBsbGz//v3NzMzatm17/vx5wNycuXPLSWTtL2KrniWecnRJ+JKXxzle5c3mH/7ZwIY44raydRObFrFIPEpCzQgEJcXb2zs5OfnSpUsxMTG6urqTJ08GNm3aNGrUKB8fn5iYmKSkJCcnpzVr1sTExKzJZymnBFy7di0gICA8PDwlJSUyMtLd3R1YtWpVYWkqZx0TE7Nq1aqiiwp4eno2adLk4cOHP//883r5cnYfH5np1DJh+AL3X9W9qG3bPMY8y8if/Pk3f1dtI9nIxl70ssSyN71HMzqCiMovw2AGK+cbQcRgBmvd4ybUjKD6szqv6bm7d++GhoauW7fOwsLCyMho8eLFe/fuffWqPP1r6evrZ2ZmXrhwITU11dzcXK35/JIUNSoq6sKFC0uXLjU0NGzcuPF0udXMGjVYvrzMpX/jN4yfq3WFgQH9+5fnLcsh5xCHcsjRhPaTQ87v/N6RjpWf9QIWvM3bYYQBYYS9zdsLWCDUjECgcQwbNkz5Z0xMDNChQwdphMrFxcXExCS+oIeIMtCsWbOgoKCVK1fWrVvX1dX1TEmcI6iisKI+ePDA2traVO7RoKmSRwN397LtobF8Qrez6l7Us2d+q4Rl5x73rnFNE9rP53z+jGezmFX5Wben/X72j2f8MpaNZ/x+9renvdY9gHriHSSo9jRo0ED5p4ODQ40aNSIjI42LfDXqlsy8v4mJyQu5v4NEJX8HXl5eXl5e6enpS5cuHTlyZFxcXMnTLLao6enpSUlJGRkZ+vr6wMO8Hg2+/pqjR0trUNjjCDXUm+u2sKBHjwq5cUc44oSTPvpV2HjmMGcPe8IJr02hu4EssCi7t+ma1EwiSaWmmcMcH3zWslYbdYzozQheRxo3btyvX7+JEycmJCQACQkJ+wp6NwBbW9sb+bwzqKJjx46hoaFAWlqaYsYlKioqLCzs5cuXhoaGlpaWenIT1CVMs9iiNm/evHXr1itWrJDyzTcq2KQJH31UKtE0vUXzG+pe1K9faUzLlISnPK1aL84zmbmHPSc4YYddEdGSSCqzU7N/VOoYIJzwAAK2sjWAgHDChZoRCDSRglpkx44dlpaWXbt2NTU17dWr17lzKjZq+Pr6btmyxdzc/F1l7wwFWLJkSURERJs2bTw8PPrI/R2kp6f7+vra2NhYWVlt3759h9w5QgnTLLaoOjo6u3fvPnToUKdOnTw8PDwKOKSYOzfXE6kaqDklAzRuXLGeUKpwZfNHfBRCyCEOmWH2ghdl76+UgnDC3+GdYILf5u1ggt/hHW3UNMKmmebyPd8/57kPPkIUZeT06dMuLi7lmGCHDh3mzJkzfPhwTa71hg1MmqTu+yCH8VtwKKljMl1dJk/G2rqiqmCE0VSm1qJW5UsvhRRzzJVD2tGu8p3iDGbwZ3zWk57SzwgiFrIwhJCCMYVNM4Ha/MmfJzjxIR+uZa2QRhkpXx2TnJwcExPTpAKtIpcP//mP2k5fyNHh0EBySuolumPHCtQxQF/6VomOAcwwyyFH+agSx2shhCh0DNCTnip1jIYj1Iwmso1twxjWhjYBBPjhJzSNRnWMGjVqNHbs2Hbt2mn6s61LYKD6l8XX41KJqlarFm5uFVj+utTtRCfR5KoBYqWZxpFDzgxm7Ge/Cy7AKEZ1pzsgRs9Kzfnz57t06VJeHaOUlBRtqXifPgwfzt69al52rB8trmNQzEq1N96gVkX2NAYyUFd8B1cLxF3UOLLISiW1BbJ51aY0/YzPPuTDb/lWCKd0xMbGvrZ1DwzEUF3Hx/+YcKoYM8vW1nTtWoHFdsa5EY1E0xVqRlBBHUy9QQxaTe4SVQsshjP8cz6v2sWd2kvRVv2rN40aITcRoA6nXUg2L6qrMRBd3Qp8BAYwQLRboWYE5ckv/OKJ53jGn+UssJrV61i3iEXppEcR9SVf+uCzgAXzmS9kVXGcOnXKtjSrgDWdzz9X39pYph5HC7Ue06wZHQcN7AAAIABJREFUjRtXYIG70z3fKi+BUDOCMrGHPROZOIQhPegxnOHf8q0ddmc4c4pT5ph3otNHfOSOezOa3eXuayulIry/FEsZDcmUJeuyX152TEz48kv1L7vWkhjHgsE1alSMp045ppi+wRvitVCdEEsAKpUook5z+j3eUw6cw5xtbHPF9Sxns8iyx/4Rj+yxDyHkOc/10a9JzTTSFrHo3/xbyDAfOTk52dnZNYrchv7jjz/279//008/lbbrv4a8805pPME80R+412pDjk62cqC+PhYWFVhUN9xqUlM0bNGbEZQSQwwDCMi3QDme+Pa0P8vZYQzbwpaBDPTB5xa3AGOMa1JzPes707kZzQII0MZaJycnT5o0qWHDhrVr1+7SpYs0IV+YGxVnZ+f58+f36dOnVatW3bp1i4qKQpWnFmdnZ39/fxcXl6ZNm/7xxx+FpSYxffr09PT0O3fuFCxbQa8t+SiYtcq87t+/b2VltX//fiA7O7tfv36TJk1SeXmVUKMGnTqpfXi0tR1k175ePZSPcvOcpor61Nccs11+fjRqhIEBVlaMGMG9e+IFJtSMNuCIYxhhS1mqrGnccJvBDIWOiSb6DGeUl9lMYtI1rq1ilZZ+5Y0aNSo+Pv7cuXMpKSkbNmwwMjKicDcqQGhoaHBwcGRkpIeHh2TiXqWnluDg4AMHDty+fbtr165FpFY0Kr22KFMwa5V52dvbBwUFvf/++3FxcQsXLnz06JFkcKwIHzNagTvuhhhWTl466AxkoA46GlL3IUMICyMxkXPnSE/ngw+qoAyDBxMRASAtyI+IKJv57SpCDJpVjaZxww35VphlLOtGt4EMdMPtHOfGMe4LvqhBjepR39u3bx89ejQhIcHGxgbo0KEDcjcqiYmJ5ubmwOLFixs0aPDq1auaNWsCPj4+derUAYYOHbpu3brCUvbx8bGysgJiYmIKS23ixIl79+4FMjMz//nnHyv5p/gPP/zg4eEheW0JCwtTeG2ZN29e0dUpouRDhgwZN27cm2++GRcXd+bMGUNDw2pw+4wx7k3voxythLxa07oBDTSn7t26yU4MDLC2Ji2tCsqwYAFDh7JlC9evExbG+PHs3y/UjKAEPOGJG24f8qGkaRxxPM3p6UyvS9361J/L3DGMqTaVjY2NrV27tqRjFCjcqChCJDcqDg4OgEIZ1KpVKzU1tdABlvr1i01t0aJF/v7+CxYsGDp06Mcff3z8+HEpgpRFEV5bCqPokk+ZMmXFihVjxoxpUaHmJCuX7nT/i7+e8KRCc6lJzf7017S6b9zInDkkJ9OzJwcOVEEB2rdn/36GDiUjQ6Zj2muhKwChZiqbXeyazvT/8t95zPPDT9I0jWm8n/3Vsr4ODg7Pnj17/PixtZL1qxJ6fFGmoKcWHR2dYlOzsLCwsLBYt27dH3/8oaenZ29vn09RFeG1RWXWReSVmZn57rvvjhkzJiQk5NixY/369Sus5NpFDWr0p/9OdlZoLj3oUYRDl6pi7FjeeovoaD76CD+/Qj2TWlhQduerNWuSVMAVQJcuXL9OZiavXpGQQK9etGiBqjlEjUbMzVQ2M5n5Ez99wif++J/hzBzmVG+TZU2aNPHw8Pjggw8SEhKys7MvXrz4+PHjEnp8UaYITy2lSE2iaK8tKrMuIi8/P7+MjIygoKA1a9Z4e3tLEVDfx4wG4oxzEyrQVKgZZsoGIjUHIyPs7OjTh6VLWbOGrEL8vSUlldnbzD8qdAxw/jwHDmBjg4EBdety4ID26RihZqqARBKb01w6b0azWcyq9maYd+zYYWVl1bFjRzMzs4kTJ6alpVEyjy/KFO2pRd3UFP2hor22qMxaZV6HDx9et27dzp079fX1x4wZM2jQoHHjxmVnZ1MqHzMaSIVaGOtHv6p1kVksOTno66NT6asTwsN55x2Cg9HTIziYd94hXAsdmwl/M5WNJ55taeuPv/RzE5uOcKQHPaYxTQingggMDJw5c6aQQxk5yMHzlP+3tAMO+XaSaQIZGSxbxvDh1K3LtWtMmkSnTgQFVXYxBg/ms8/o2ZMuXTh/nogIFi4kRJUrAE32NyPUTGXzN393peuHfPgxH9/j3hCGrGe9O+5CMhXHo0eP8q1BEJSCdNJXsSqN8lxxpYvuB3xQj3qaVtnMTEaM4MwZnj6lfn08PfH3p8QziVWAUDOvIyc44YCDI44F/7rPfR98jnCkFrUWsWgyk4W4BFrBGc4c4lA5JtiRjkMZKgRbvdWMmJupEMII88Lrb/5W+a899gc4kEpqCilCxwi0iK50taHc+oWGGIp+/OuAWNBcITrmbd7ew54e9CgimjDcVGns3Llz9OjRQg7l8VmqO5jB0USXS2p22BljLKQq1EwuU5iyhjzWMt7l3e/4TghRmXDCRzN6L3t70SuZZH/8QwgxxdQff088hXyqBCcnJyGE8qIhDRvSUMhBoM7XSYkJJb912+q6o7AsWGFVgxqxxP7N313o8oIX+9i3hCXTmFY5FjtKSOfOnXfuLGbDnbOzc4jKRS1lS1bddJKSktzd3c3MzDw9PXfu3NlenW3QkguZjh07ipYpEGh0b2Y3u4E00qQTiRvcsMJKSDAfbWhzhCMeeJhh9hEfTUfmuXA2s9exTnPMacyaNUvZYopatG7det68eSpdUpY62XxpKqezceNGY2Pj5ORkHR2d6OjoTz/9VDQzgaC6qZl5zANSSJFOAF10bbFdz3ohQQnldWWSpokgQnl6P4ssDdmAJjlo8fLyqojEyytZ5XTu3r3bsmVLybSMk5NTKUbATp482bt3b9FKBYIqoUSDZle5epWrk5gknVzl6mUuH+GIZGZYEEnkeMb3pW8MMYo+jbKOiSd+KUsnMrEKC5nPQYvyqNTdu3elUam2bdsuX75c2VHxzZs3e/fubWxsXITrF2WUk7Wysjpz5ox0fvz4cYU9scDAQAcHBzMzMzs7u2XLlqlMU5HOhAkTtm/fvnbtWkdHR0dHR2tra8WgWWE+Zgq6kElOThatVFBKXkFr0AGx76NC1YzEKlblC8kmW0gQMMPMEMNpTFPWNBK3uLWSlZ3oNIMZVa6VlR20KHduPD09W7VqlZCQEBISsnnzZuVLvv322/Xr1ycnJ7du3boI1y8l59q1awEBAeHh4SkpKZGRke7u7kWnuWnTplGjRvn4+MTExMTExKxaldsIC/MxU9CFzNChYmeGoLQsAOuqy30YtMp7DNM+Eaqx0mwSk1awQuHjKIEEb7w1alq7qqhPfX30/8W/gL70DSfcAQfJO1M66emkhxHmjHOVl1PhoEVHyTZTVFTU5cuXf/vtNwMDg4YNG86YMWP27NmKf6dNm9ayZUvggw8+GDJkSNnLoK+vn5mZeeHCBWtra3Nzc8lrSykozO/LnTt31HUhIxAUyhX4ETaCaxUV4BZshPrynw/gA+2Tohq9mdvc7krX61wHjnK0He00ygdR1TKAAYc4NJ3pUp9mAAMkBdyGNv/H/2mCjkHJQYsyf//9t5WVlcKsfcOGedaq2tnZSScmJiZFuH4pOc2aNQsKClq5cmXdunVdXV0Vo2rqovD7Ig2mubi4SH5fVLqQuXv3rmiiArXJggmwAoyq+DMWB/lRXysFqYaaOcIRL7y6090bby+8lrN8M5tFU1RWM8BkJtei1m/81pjGmlZIHVUGZuvXr5+YmPj8+XPp570SeDwvoQMVExOTFy9eSOeJiYmKcC8vrxMnTjx58sTd3X3kyJFqpalA4fclRk5KSoqDg4PChYwUTXIhc+jQIdFEBWqzHJrCwBLEtACTMh8W1VaQuupE1X2XdxvQ4Ad+eIu3xGZDZXrT+wxnUkn9F//qSMcv+bIf/VJI0fySN2/evG3btp999tnLly/j4uKWF+a5SYkSOlDp2LFjaGgokJaWpphxiYqKCgsLe/nypaGhoaWlpZ6enlppKijM74tKFzI+Pj6iiQrU4zZ8DV+XLHIS/FPmI0moGQgmuAMd+tP/BjfucKcHPW5zW7RGCQMMOtKxK12tsPqO7z7hkx3sMMNM80su+VyJjIy0sbF56623vL29DQwMir6khA5UlixZEhER0aZNGw8Pjz59+kiB6enpvr6+NjY2VlZW27dv37Fjh1ppKqPS70sJXcgIBMVwEhKhLdjKOzRN4MeqKMkDiJUfD7RSlmpYaLbCKoigIQwBMsn8nM/Xs14rPtjLkYJ2l7ezfTSja1DjClc2sOFrvq5BDe2t4IYNG7Zu3Xry5MnSXd6hQ4c5c+YMHz5coyqlcMMsEJSUdHgqP78EA+E21INalVuMYXArb0hTCFYRsZpYaL7IRUnHAHroLWbxj1Wj3KuSy1xWXrU8gxmrWJVOOtCGNqtYpY065uzZs3fu3AGuX7++ZMmSUluZTE5OjomJadKkiaZVUCw2E6hNLbCVH5YA2FS6jgGCITLvEax9slRjQbM99sArXsUT74ADMIABr1vbm8rULLKkVcsrWHGa04c5bIKJVlcqLi5u9OjRT548sbS0HDdu3KRJk0qRyOnTp998801vb+927dppWgW//PJL8doUlJ7OkCOkUHrUGDRLImkyk/ey1wSTFFL2svc85xey8DWU2nKW++PfghZHOVqHOqIZCQSCqqWaDJpNZaoRRnHESTPbPem5hz2v5x29xz0rrB7zOBlhxUQgEAjKSc0c5ega1ii8dtel7kMevoYim8GM05y+yEWV1mUEGogYNBMIqhA15mb00X/JSyP5jtgEEixlU2OvEXOZK83H1KGOZOS/L30vcEEr1i6/tkydOlUIQSDQgt7MW7z1IR9Kw0TPeT6DGcO00Ypb2RjNaEnHSD+nM11b9se8ztSuXVsIQSDQAjWzhCVPeWqFVRxx5pinkhpAwOsgoxylVSYtaJFvzr873UUzEggEgnJQM2aYHeTgLW4d41gUUQc4YIpptRfQTnbuZKdoKFrNli1bhBAE6jIedJSOECGRSlAzU5gCNKJRX/pKdiHf5d3XQEC6e9krGopWo+xfRyAoObMgVX68WRUF6A/2eY/+WihGNZYAhBKaL2Q/+6t9OxvEoClMecELhaMdgdYhucwRCNRFnyreen1dW82Yqa9mdrMbSCNNOpG4wQ0rrKp9OzPBxAWXoxxVGNoRCASvCZthC9jBGJiKNhsr1Hw1M495QAop0gmgi64ttutZXy2FsolND3jgiWdLWgL/5t/72CfUjPZy7Nixfv36CTkI1GIsTAYr+As+hmSYX0hMC3hV5uxqVl9XACVSM1e5Ckxl6ipWVafKp5FmpMoxXjvaXeVqf/rXpvYIRrjiGkpoFlk1xNeMdpKdnS2EIFAXxSxIU0iBxYWrmSQhrCJRYwlANdMxOeT0pOd2titCfuO3iUz8hE8MMVzO8jjivuGbhzwcxagEEk5xSjQXLUV4nRGUEX3IEFKoBDVTzdBB53u+n8lMSdPsY99oRjeneR3q9Kf/NrbpouuG27d8+5CH4xi3j32iuQgEr0sPGDbDPXgKYTCfqvEW3ALq5z1aaOPLtuQWmqslV7jigUcggatZHUhgT3oCN7kpDZS1p70U7T73XXEV3kK1lKioKGdnZyEHgVpqxgMuQio0gLfBDww0uMDVxEJztaQNbY5wZCYzL3O5Oc2lwGY0m870DWxQRLPHXh/9K1wRj5828vvvvwshCNR9Mx6DRHgJtyBAs3WM5gvzdUfSNMYYr2GNItASS2Uj/1lkZZP9hCdCXNrI+++/L4QgEFQVxa80s8W2iH+1yBdAFFGnOf0e76nUNL/ya3/666P/MR/f495CFi5jmSJCMMHNaPYGb4gWIxAIBGpR/NyMYoXVec6vZ/10pjel6UMermLVm7yp2Emj+cQQ44bbp3zqg4/KCFe44o57KqmNaPRf/vsf/qP8byaZeuoYTRBoDqmpqaampkIOgmqMJs/NqLEEoC1tgwluRCPpZxppAxn4G79p0Z0oiabxwOMIR9rQRjTcasMXX3zh7+8v5CAQakbT1Uwd6iSQoGzaqxOd/uRP7boZxWqaRzyywUa0WoFAINRMuaDGEoAudJnBjFRSgQwyAgnURu+ZT3jihtuHfLiWtSojCB0jEAgEVaNmNrLxPOfNMa9HPRNMfuTHjWzUrtruYtdQhragxTzm+eFXmKYRCAQCAH6BzmAIddGeeWhNQ4057UY0Os/5G9x4wIP61HdG+/a7zWTmT/wk7cF8m7ddcAEKGz0TVBvmzJkTEBAg5CBQk6MwClbAW5BedSb5L8OXcBucYRa01To5qm0F4BWv4ol3wEEbW40xxrHEKvwXLGGJL77f8I3QNNWbly9fGhiI3XUCdXGBflSxK/qLMBSWQnv4A2bDL6DCf1I1mZtJIskLLyOM2tEO2Mvez/hMu1rNm7yZbw/mSEa+Kgcb3gKNRugYgfq8gHNQE5qDOQyAqKooRiB8BaOgOYyFL2Cx1olSDTUzlalGGMURZ4YZ0JOee9ij+TX8hV888RzP+LOcXcnKDWxYyMLnPL/O9YUsnMjEaUwTj5RAIMhLCmTDNgiGOHCEwYW7lbEAkzIfFqpSvgUdlX52hr+qs5o5ytE1rKlHPelnXepqvgmAPeyZyMQhDOlBj+EMDyX0DGd+53cLLFxwmclMd9zF81TtWb9+vRCCQE0k78w+4AwmsBhuQ2EDU0nwT5kPlW5rmpJn08gfebVOtVMz+ui/5KXiZwIJmr+geQ5ztrHtXd5tR7sssuyxr0nNAxxIJTWFlMlMFg9TFfAE+oFFyUyrO0NIWTPUFNeZnWGnqvBTFGrRqTyqLyitmmkCOlVdDF/4HL6Ha/A9+MEn1VnNvMVbH/KhZFDyOc9nMGMYwzS8evHEt6f9Wc4OY9gWtgxkoA8+t7hVk5riMcqlNeyuxGu/BSN4UoZM1aRJkyYVLoeSMAs6VXUZBGowGdbAbUiH2dAUWlfFw3kAjsF4OAK/auNKMzUWNC9hyVjGSsu0zDEfwID1aPpYhBtuM5gRSqikY6KJPsMZhb0cQdVwF1pW/GdiDmRTsW611c3CS9x77eK/kAw94CV0hxCq5vO0HXyv1XIsaW8mk8wb3Agh5Ba3jnEsiqgDHDBFg8wRhhP+Az8g30YqBS5j2UEODmCAG27nODeEIV/wRY2KffdoG1MhGqaAI0wB4ClMhgZgA95KI8aB4ABmYIfMenXBa/P2JfEEa2gAn8ALACbAdlgLjig5yAYgGSZBQ6gNXSBWHn4TeoMxdFNa7LMUnMAEGkGgUiLO4A8u0BT+kEXLqpWVP1rBvEouh3xZKPhRqbMyAQzlVV4LkpNo5UGzWOgPZtAWeWstRJ4qq38IVoi2Wwmvxy8hAVLgEHJ/VAJ1Kem+mWyym9FMk91HSlYvBzDgN34LI8wRRyn8DnemM/0kJ+tTfzazxzBG3HUV/fJ5SjMlQ8AI1oIhTIYX8BNcAxe4AI0hGWKReRbNd60yPaAprIEUGApu8hf9f8AKFhWI7wGGsAFs4BLYgzU4Qw3YBU3BBx7AIQB2QndwgD9hAGyDN+U6wAB+BSvIgR+hOydiTriauOaJpjKvksihYBaKbtkjsIPHYA6OoAfrwR08oQv8H3SGmTAagC7QCb6Gv2EQpCBbT5OvDIVV3w8O5VVygtcbTd43U9JBM110bbBJIslC9aq7qqcNbd7jvYUsDCRQoWOAxjTez37RCtUY0QqFRDAHYDE0gFegD5lwAazBXP5vEdyA0xAiX6sZAOPy9ifycRuOQgIyk3IdlP6aJt+O9gEMkQeOlp90htEQLtcfgA+yDbg6smiujq6yS6RoReRVrBxqFshCgQ20gHBoB8B78Cu4QTj45k08Ci5AGBhCY5hepB0TldVfAAtEYxVoB2rMzfSnvxtuPvjYYacjf7wGM1hzKlOXugc48AEf2GI7lrHi7paGmAJvXhOIh2YQBCthHHSBxdC9yHTuQx2lnQBNIBnSwKiQ+LFQG9VmS+2USpIqP/8ZlkEs6MBT+LdS/PpK5yqjFZFXsXJwKJCFMu4QBk/AHdxhOlyEnAJrUB+ANblDzk2LLInK6gsE1VLN/MRPwHKWKwdqlJqRNloe4YgHHsBYxj7m8T3udSp+fc/rjfIMnQPUgEgwLhDNC7wgHZbCSIgrcK0y9vAUkuW9gTtgXriOkfJ9Bo/BugQFjgcvOAKuoANT875/dfJHu2R2qV37drnRCsurhHKg8PULbvB/kAhDoTNEwz7oU0BK9SEJMkAfIM/2M+E2XVCtXzDFEEVUwUNDqrGf/W64DWXoKU61oc0Rjsxi1nSmv8EbRzkqbnMx2MIN+Xlj6AcTIQGABNgnH+cJg5dgCJZK3yfK1yrjBN1hBjyHB+CPKu/YSjQBD/gAEiAbLsLjwiOngi60AR2IhV3FRIu8FpknWmF5lUQOReMKN+EQuIEe9IAVqNgB3Bxay+fw02B1IfeiCMQSAEG1VDNTCqwlepd3NaEO29n+ER9NYpI33mMZu4ENbWhzlrN66C1ggW/+cXFBAXxhC5gju587wBK6gin0gnMApIMv2IAVbIcdhVyr/L2/G56BI3SF3iWYS9gBVtARzGAipBUe0wn8oAf0gukwoJhoY9aMyR9NZV4lkUPR1IFOUF++3dIdnoGbqs7QbjgEncBDvg6taHnm4xRsFQ1XoB2oYaHZEccY2Yi1DHPMpd2aVcgLXjSlaRhhTjhJ2zBrUMMPP2F0WSAQlAUTE5Pnz58rfqprzL6S0fqVZrvZDaSRtltpg/INbigs6lchEUQMYYgTTte5PoQh3/P9Yx5L3SyhaQQSiYmJVlZWQg4CtUhISMjJyZHOPT0969evXyXFuHz5sq+vb3R0dKtWrQICAtq2raZWAOYxD0ghZZ583aUuurbYVr4VgHDC44kfw5iNbGxP+y50qUvd4QzPIccLr2UsG8jAzWwewxhh3l+gYPPmzbNmzRJyEKiFsbFs+ceDBw+OHTsWERFR+WW4ePGiq6trampqTk7OnTt3Tpw48fvvv7ds2VK7JKnGoNlUpq5iVdUWt7A9mFJX5ha3EkjoRrcd7JA8YwoEAkEZ+eKLL/bs2XPp0qXKz3ro0KEhISGKTpWOjs6wYcP27VOxHKU6bM8EqlzHUPgezIY0zCTTC69TnPov/xU6RiAQlAvZ2dmbN2+eOXNmEXEsLCxevSrr8EnNmjWTkvL7Arhx44ZCxwA5OTkXLlzQOhmqoWaucW0GM/7ir1SlTQovZGabKg+VezCNMf6d3/ew51M+7UIX8WwIBIJy4fDhw48ePfL29i4iTkH1UF40b9785s2byr2ZDh06aJ0M1Rg060KXgQwcytBa1FIEtq4Cy9ggHz0LJFDswRQUy6xZs5YsWSLkICgFw4cPNzU1/e6776ok96tXr/bs2VOam9HR0TE1NT158qTKVQCaPGimhpppSctrXKuqgoYRtoUttag1iUkd6ShpmoEMHMnIwxx+l3fF/hiBQFC+PHz4sEGDBuHh4b169aqqMly6dGnu3LmRkZEtW7ZcunSpk5NTYQpJY8WoxvZMG2ye8axKSrmDHd54t6NdfeoPYMBmNgNiD6ZAIKhQgoKCmjVrVoU6BmjXrt3PP/988+bN4ODgwnSMhqNGb2Y+80MJ9cFHebtM5dg0s8NuF7t60hO4yc2e9DzAgW50E4+BQCAQUG0GzZxxLhhY0WbNIojoTncDDB7yUKHelrDkKle/13KPcpqCSfWvYkZGhr6+fvWv5z+iNQs1o4mosdKs8g1lhhDyMR+f57wHHmtY44+/FG6BRVUN34nXkzby6MGjqtrCLT4XBAI9jS3ZLW4tYtF2tltiuZrVveilj/7HfHyPe4tYtJjF4uYJSkj11zECgQajtneLIxyphL0yKaS8wRsXudiOdkBjGp/k5DGO1aZ2d7pPY9oIRoibJxAIBNVQzYxhTCKJFV0sM8wOc9gIozWskUKa0ORXfn3Gsyc8mcpUcefKky3gAkYF3DjOgJZgBI7gB1nycD9oBAZgBSPgXt6rXkFr0FEaixsPOkpHiFLkX6AzGEJdJUfFJnnjK4aDHsAIsAILGAx35OH3YThYghVMgwx5eAZ8BOZkGGXwPqS/LvWlDnnqKxBol5qpNNrQ5ld+Xcay7WxXBBpjrKfBA33aihX8Fz4vEP4PbIA42AqbYJE8fAiEQSKcg3T4IO9VC1R5wJwFqfLjTXngURgFH8I9OKfkdiVBKfIAGCUPnwwv4BbEggko9mX/G4wgBi7Ab8in8GAu/AoXuLLrClfhk9elvkSRp74CQZWi0a9syQ+mwuOyuFsVxWD5N34+NspPesNoUBioVawkNwDrvP7HrsCPsBFc8yalr2qO2h+mKXnVdMj9msj9nD+mlO8V+ALMABgnfx3fgz9gJ5iCKXwC0+Ar0IFNEAiOdHTsiA6MhOVgUE3rS259AeYp1VdQOp48YMPHXDlBTjYtejBxJbaNq6wwac8wql3NezODGOSMszPOKaT0oY90rnKJc0VompnMvMIV0eyrjBz4HTrmfSPbginEKb2vs2ACrACjAilsBnvoCl/LB6NewDmoCc3BHAagYiXjJmil9Jb/F/wAiZAC38G/5WXLV9QkiIOH8AgU9p86QBrcrr71zSlDfQUq+WYyr16w8RabYzE0YZl3lZXkeQqzevI8pZqrmaUs3ca2bWwzwWQlK6XzbWyrnD7NJS61oY1o9lXG5/AMlD22jIW/4DA8Aj954HJoCgMLXD4W9sJxmAmL4AsAUiAbtkEwxIEjDCaPk6Bs2Jx3hGo+pII1mEM0BALQENrDXHgKsbAcgGfI7LvWATh79qysT/Cs+tY3J7e+gHr1Fagk9gq9R2FsRi1T+o4j5nKVlWTbHP5JZru/tqqZjIyMhw8fSj9++umnP//8UzqPiIgIDg6WSTs29vg3xzvTuTOd9dALXRQqnXem81dffZWcLPPT/P333yu2CIWFhR06dEg6j46O3rRpk0wrP38+f/58RfZz5857WWQ6AAAgAElEQVRNT5fNVG7cuPHmzZvSeWhoaHh4uHR++fLlI9uOSOdJSUmLFimGzPH19c3OzpbOV69eHRcXJ53v27fv9OnT0vn58+d375Y5/fz777+//vprxeWffvqp4jwwMPDRo0fS+c6dO//66y/p/OTJkwcOHJDO7969u3btWuk8IyPj889zR/e//PLLZ89kz/SWLVuuXZMZfzt27NiRI7LCX79+ffPmzdJ5amrqF198obh8zpw5L1++lM7Xr19/+7bsK/TgwYO//fabdH7x4sUffvhBOk9MTFS2Banss2vFihUPHjyQzvfs2XP27Fnp/OzZs3v27JGNzTx4sGLFCpWXL1myJDFRtsTjhx9+uHTpEnNgD6cXnD548qAUfvv27fVb12MHfcj4KiNrVRZZcBu+ZlmDZampMgPeW7dujYqKAujPkWdHjsUcwwu+4NXmV1u2bJHGlF689+LLPV9iAovhNt/4fJORIZvRPvjxwZyEHGlCYv/+/Sd/O0k/aMOl45d2B+3GA1x5fP9x4LJA9sJTaExyu2S8ALBk486NAE8Bdu3adfH4RYDanD59WuGuIzMzc/Xq1bKXfHa2r68vINV39b9XJ2XKzO5u27bt8q3LUn0vj7ucvTpbqm9mYOa2ztuU24DsrD/zD89Ps0uT6pu6NjU6Olqqb1TfqLC/wxT1DVkkWx6QnJz84/s/8kg2AfPZZ59lZWZJ9f126bf3Iu9J9T2w+0DE7xFSfTMbZj7v8lyq76OsRxmZGYr6zpo1C+nDtzb/+9//EhISpFx+/PHHwh7wb775RtZDy8qaPXu2olJfffVVSkqKygf88OHD0vmNGzdK8oBv2LBB+QE/fvy44gHftm2b4gFfvHix8gOuME68atUqlQ/4uXPnCnvAlRt2vgdcYU4/3wO+bt06xQN+OqcuJ37gWSLPU65/45vReXDBB/zo0aOFPeABAQGFPeB37siWc4SEhBT/gEefe3J4K6sucf4g0ecKe8A1GR11HVxbYXWRi/bYly6/FFLMZB9aAs3ARL5EagssgFt5/50JoRAGtoVcHgpe8Ay+h8nyj+hMeAI2sFJpQlsiCObKF2s1hakwTf6xbw5/Kg1VDQdTUBjGfQj14Aoym+DxYKf0U8HXsBZuAGAD/5PPnP8CnpCkNFdRzeprAkZF1leg9lDVU+YP4vrvAI3a8cVhzOqqjvm2BZlldterV5MdBRwK5GTz326M/Iwew/l9D7sW8b+z6KgYhaomVgDkz8JwIxVD0SXiClckx5dN868kFVQpWZABGZADL0BH/m76CI7BETCDF6ALNSEDlsFwqAvXwBdGgi6MUho+ugQD4TTUg2zYAv2gDvwJ88FTHm0yrIHBYAezoanSO/QhHIBwpULWhXqwFhZDDVgJdUCakf0DrMEEwiCAXNfh/4GF0BsMYD68I6/X61ZfQSnIyWFOP5p0Yu5Bauix4wt8XVl1CX1VMt1RUf5mOL6dnGwat+fhHRp3IDuL4z/Q11u7ZKl2b6bUXOGKO+5ppHWkoy++gxgkWrKm9GYWkWcnUl14KP/cVqYdXIRMGAFn4CnUB0/wV1orhfw92AVSwQSywQMuQio0gLfBT/76y4Y58C28hO6wAprLU1gIW8nvd+IPmAV//T975x1X0//H8ddtj5v2oHybGmRnpYQSkfFFZslsyTclRFYZSUL6KluEsiIRlcoe2T/6IkXLN4UW7XF/fxzuN81bbnVvPs/H/eOcc8/4nM8Zr/NZrzfAAHoBXgDlnLsT8ALyAS1gHWDxY/0KYClwAowqBm0qDXt+tNX/3RHPlw7kfT9fVANT8N/5ElpA3kfM6Yy/X0BZFwBys2Dd5b/ZtqGiDO4jkffxp4WSnbE5tq7adRDrTIpylGchS/m/zpisaowpTJdhmQMcnuP5bMwORjDluEzglEqzjoufn5+TkxO5joTmlWbmKmLwn5jnDR5ehHjiSiCO/gtBDpXuDiIzuci1g10Ywuig5yM/DGEP8dALXixqDBXpklryBV+kIV2FKl7wkvuZvJ4I5DpyIm8fIWgFUp6AwYBKL1h7obsBxya2g4Q1W4IlIhDJQAbVhj8UQ8/hXJNb5SCnlsYAKEThWIwVhKAiFEMQQu5nAoHAcXTTw+Y4hObjVAG8b3GyxnA4zegCEIOYVKQy2//lIf8RH5vcSg5y0YiuOeolBSmGMLSF7WEcTkbydExXgMIIjCAXg0AgEH5rmeEHfxnKmDKTjWxpSLOyYa2RlTawcYTjaqwGoAAFF7gcwREiM+1JRw9VUl5eLiAgQK4zgcDpMjMO4xZj8R7sAVCEImc4T8TE5h6vCEXXcT0c4TWXCEOYOfsCLz7jM1GdtuM3qNAXANEYAqHdaEbbzDZsK0CBDGQykCEJya/4uhEbm3s8QQjSQc/A99G8yUj2h78tbAH4wW81VpvCNAtZ5MIQCATCb1eakYDEZVx+j/epSFWGshrUWnQ8vo3YOB7j3eCWi9zt2O4N737oB0Ad6kux1BrWszCLXBgCgUD47UozaUj7hE+qUB2BEWpQ+4RP6bUDPLHEX/hrK7ZGIOIlXkYgYj7mA3iBF4uwaDu238TNA/8ZshMIbKCm/xuBQGhjmjFuph/6HcbhPuhDzT7FUzvYPQAbjNtqDqxJReonfBqAAeTaENjF58+fZWRkSD4QmkVhYeGVK1fS0tIA9OrVy9TUlIeHc+NAdpDhmXTQC1HI86MAVI1qSUgWUJawv0AmMgdh0DZsI4HLCAQC53DgwAFpaWlzc/PS0tKQkBANDQ1jY+P2SkxZWZmgoCCXykwzxFkCEp/wiTmbgxwxiP16CnZhlwUsamrMS7yMQ1wZysiNTiAQ2oWCgoJ///13xIgRAgICnTp1GjJkCDOGQttTWlp68ODB0tJSLs3MZsiMGcxsYUspTQ5ybGDDFvvLIRgShaiaApaFrNM4rQ71EzhBbnfCr8MM40EgtJiSkpKCgoJ2OXRUVNSXL1+YgW06ssxsxdYiFMlBTgIS8pCvQMU2sKFldQqmWMOa6k1QhKJXeGUCk73YG4e4VVgVgQhyfxN+ke7du5NMIDQLcXFxBQWF+Pj4srKygoICKooaMzRZW/Lhw4d//vmHwWAkJiYyA5pxF812aE5BShrSlKGsDnX2JuVf/KsPfT7wCUP4DM5oQ/sUTu3DvjjEUSuQkZsEAqHNyM/Pv3LlSkZGhqCgYP/+/WNjY5ctW0an1+OZ4e3tXVVV9YuH4+XlXblyZa2FDAYjICCAGdBWRkbGwcGBRqPV3bxDhTVThzrbBYbiHM4NxMDTOB2M4GEYFoEIHvDQQQfgB79sZB/BEV/4krufQCC0ARISEjNnzqSm79+/Ly0tXa/GAKgrD+zif//7HzNINqV8//vf/3r37s1dOcnHOUkZjMFe8MpGthWsZCE7ERMFIXgcx0FGbhJ+jZs3bw4bNozkA6FZ/Pvvv6KiogICAu/fv79586a5uXkbJ6CqqiohIUFAQKCmI19CQoKuri4vLzeFUOEgmRmAAc5wHozBG7CBD3y84HWHuyEMmSM392DPARxYhEXkASA0i69fv5JMIDSX9PT0W7dulZaWysjImJubt30LHy8v76JFHeF113ZBmlnkHu79jb9DELIHe+xhT0ZuEggEQpN0qCDNbYAf/AQgYA97MnKTQCAQOr7MKEChkX9ZiWzWYlzhWonKXdhF7iHCr5CSkqKurk7ygUBkpl1oetzMWZylfiuxUgISG7DhOI5vx3ZlKNvBrlUTV2vkZhrSLGAhC1ld6IYhjNxYBBa5du0ayQQCgXNLM0x6oVc4wlWhSs0Wo3gMxtzEzVZN31ZsHYVR/dH/Hd4NwZBxGLcd25/j+RzMOYADYzCGXEICgeuwtra+evUqPz9/ZmYmyQ1SmvmPNKR1RmfmrAhEilDU2ulzg1t/9AewFEvHYEwkIt/i7QiM2IiNB3GQ3FsEAoeTmZm5efPmWgvnz58fExNDMuc3oRkdmqkOx9uwTQxiFajwg580pNssobdwKxvZcYibiInhCK9AhShEyfUjsEKT7raEX+Tz588DBw40MzPLzMz89u3buXPnJCQkqL++ffv29OnTWusbGRmRcszvQzNKMwdw4CEeSkKyMzrTQT+FU20Zf0wRis/wbAzGBCFoIiZuwAZ72De0cipSX+M1uboEik2bNrVgK21t7UuXLrVjsm/fvq2goMAtmZyenv7XX3+Fh4fr6+sfPXqU3HWElsiMKlQf4uFLvDyO48/x/CEeKkO5zRK6GqutYPUWbyml2YANgzE4C1kWsKCDrgzlszjL1JiRGHkP98jVJVBs3LgRwPDhw2k/w6Uf1Lq6umfPnm2vzRtCWVlZS0sLgI6Ozvv37wH069dPRUXF2Nj4ypUrKioqKioqhw8f5sQMDQrCkCEQEYGGxk/LKyrg6AhJSYiLY/58lJSQR6llNM8FgAaaGtSEIdyWAkMxC7NKUDICI/Sh/zf+HoMxmcgcjMGLsMgf/slIno7pqlCVhvRIjFyO5fMwj1xdQi1WrVq1evVq5qyoKKl3ZRv8/PzfP115eCorKwE8efIEwOvXr9esWdMawsY2ZGTg4oKkJBw58tPy9esRG4unTyEoiIkTsWwZAgLIhW7d0kwucqdhmghEeqM3gDCErcKqtkzrAixIReoWbJGDHAB72C/G4vVYrwAFAxi4wCUQgZTGNFKfRvidERAQoNeAcrrV1tb28PAYPnx4jx49Bg0a9Pr1f9Wtb9++NTQ0FBUVrbncx8dHU1OTTqerqqpu376duXJD+8nLy7O1tf3jjz86deo0YMAAKuhvQUGBnZ1d165d5eTkLC0tc3NzqZXT0tJGjRolISHRq1evhw8f1j2FJUuWJCUlOTg4qKioODg4NLSrzMxMGRmZixcvAqiurjYxMbG1ta1386tXr/r5+bGYgQ3tlrsxN4eFBRQVay8/dAirV0NFBZ07Y8MGHD2KNg4EUFyM7t0hJfXTr0cPFBd3WJlZgiUiEMlAhgQkAAzF0HM41+aFLz4NaAAoR3k0ov/CX8y/ilB0GIeJxhDq4unp2fgKkZGR4eHhiYmJpqamS5cuZS4/ePDgvn378vLydHV1mcu7du0aHR399evXM2fOeHl5XblypfH9TJ8+PSsrKyEhIT8/f//+/SIiIgAsLS3z8vKeP3+emprKw8NjZ/d9CNrUqVPV1dU/fvx44cKFffv21U2qv7+/pqZmQEBAampqQEBAQ7tSUlI6cuTI/PnzMzIyvLy8cnJyKC2pu/nt27eDg4NZzMmGdgugpKREW1u7a9euQUFBTe5n5syZAwYM+Pjxo5KSkpeXFyfeNB8/IicHfft+n+3bF8XFSElp0zSIiGDVKujoICXl+09bG6tWQUSkw1aaxSAmFaki+H6G8pBvVQuAJj5LISAM4XSk60AHQDKS/eBH2aDVuz4DDBpo5IX7S4wciXnzYGXFdQl3dnamJrZt2/b3339/v4Hl5RMTE6lpe3t7cXFxABMmTNi7dy9zQycnJ8owcdGiRePHj6cWzpgxg5rQ09ObMWNGfHy8mZlZQ/tJSUmJiYnJzs6Wk5MD0LdvXwDv37+PjIz8/PmzpKQkAG9v765du5aXl7979+7p06dxcXFCQkJqampLly7dsGFD46fW0K4EBATGjx9vZWVlZmaWkZFx//59ISGhevewadOmZnWRqHe3MjIyQkJCwcHB/fr1MzU1NTU1rVnIq1tjFhISwuk3DWW3Ki7+fZbqOFdYWP/KUlIoL//1sjZ+FGr/w8oKQUG4fBmWlggOhrAwLC257gFshszwg78MZUyZyUZ2W3ZorosXvMZjvDvcc5HrBa9N2NSQxrzAizmYcwd3mIkntIT799G7NzfKjJiYGDVhZ2fn4uJCTde0UpeRkaEmhIWFa9o5d+nShZqg0+nM5RcuXPD19U1LS6PRaAUFBX/++Wcj+0lLS+vUqROlMUxSU1OZksPcf1ZW1ocPH2RlZZmp1ajVIl0fDe1KWVkZgIODg5+f36xZs3R0dNiYn3V3+/LlSyEhoQEDBgCYO3duWFjYhAkTuPtup65CQQG6dgUAKuhLp071r1xXHtiIvz9Gj4aBAVavRlQUN+ZlM2RmHMYtxuI92EPVUDnDeSImtmPS7WGvCc392H8GZxopxzA9nonG/BKvXoGXF1zu2tKpUyclJaVf2UNWVta0adOio6ONjIxoNNqSJUsajzKgrKxcWFj46dMnWVnZmgt5eXkTExNr9UEoKSnJzc2tqKigmtM/fqy/toCHh6fJXQGorKy0traeNWvWpUuXrl27ZmJiUnfzFlDvbjMzM7tSr2NASUmJS2MJ/4SCAmRl8ewZdHUB4NkziIigXZzxunfHpEkwMMDkyeDOcOPNuOG2YVsBCmQgk4EMSUh+xdeN2Ni+qTeGsT70WdEY4vH8q8TEoLISKSkN1htwMMx+tJWVlaU1YDAYza9K+crDw9OzZ08ajZaWlnbmzJnG11dXVzc1NV20aFF2dnZ1dfWzZ88+ffqkpqZmYmJiY2OTnZ0NIDs7+/z58wC0tLR0dXWp1o7i4mJm/V6dF6DCmzdvqOmGdgVgzZo1FRUVR44cCQgIsLS0pFaotTma2QWgkd22IDM5haoqlJaiogIMBkpL/2vnX7gQXl5IS8PHj/DwwJw5aK9Bvhs3QlISTTUxdgSZkYDEZVxORvI1XHuN1xGIEINYu5+AE5yIxrQF58+jtBSCgrh5k+vSPmTIEGpi8+bNwjV48OBBc3elqam5Zs0afX19AwODpUuXjh49uslNQkJCZGRk+vXrJyEhYWNjU1xcTC2UlpYeOHCgmJiYgYFBQkICABqNdvbs2atXr/bv379WC0dN3NzcgoKCJCUlra2tG9pVVFTU3r17Q0ND+fn5Z82aNXbsWCsrq+rq6rqbN6sLQEO7VVJSYg5CysjIUKzba4uTCQyEsDBsbPDuHYSFofxjtIaHB4YPR+/e0NSEjg582y9CvIQE7tzBD2MFrqMZ1pkOcAjAT93GrWF9FBw63PcFXhjDuAhFvdBrJVZOwiSiFC2nogISEiguBo0GGxvUaCQnEKiijJaW1okTJ/r37z9q1KglS5ZMmkSeuDalg1hnRiKy1pKLuMixGjMKoxZjcQpSfODjAIdbuEVuxJbz6NH36gIGA5GRJD8ItT9XabSDBw9aWloqKytra2tPnDiR5AmBCUtdACgfl2IUMw1dALzBGxnIcGw5xhnO1OhRBSgsw7JgBBvCkFzvFhIVBWaRNy8PWVno3JmLkh8dHd1QBRSBXQwbNqxmkw+B0DyZ2YANAPKRT00A4AGPAhT2YR+nnU8Ockxh+hVfa43c5IRmJC4mPBwVFT8KwDyIi8Nsbmru+sW+VQQC4ZcKu6y3zSzBEn/4c/4pvcCL6Zh+DueYIzcNYRiDmFKUPsfzBVhArnrzKCqCnNxP/hZTp6KpHlYEAqEt6SBtM1yhMQB6oqcLXMZj/BEc8YXvMAzzgY8udE/gxAd8ILdjs7l1q3Y/zthYkisEAoFFmufQfAVX4hH/CZ8Y+N5HPghBHHhWC7FQFrIhCJGCVCQi+6BPNapP43Q0osklbzaXL6Og4Kcl1dV48wZaWtxyBv/880937hzXRiB0AJpRmvGBjyUsi1B0HufFIHYFV5hiw4FMxMRQhAYgoA/6ALiO653QqQd6kEveEpmprv5pSUUFuCrCLjWUhEColyAEDcEQEYhQtrxNLie0oswEICAKUXuwRwIS/vC/j/uF4JoB4SEImYIp1PQ3fDuDM6EI7WgXc+JE3LjB5n1WVeHffyEs/N0UVkQEIiKoroabG5sPlJEBKSm0Tn+wuXPnkked0BAykHGBizvcWVxOaEWZyUFOf/QHUI1qBhiqUM1BDlecZDnKz+GcEYyO4Mh4jFeByimcos6iQ13MjRsxezYuX2bnPnl5UVqK4mIUFUFUFEVFKCpCSQlY6zbCEiUl8PCAlha+fcOJE+SZJLQx5jC3gIUiFFlc3mYUo7gbuol8/7j7/tOEZjE6brwZecinIx2AMpRv4MZnfP6ETxx7YmEIq0IVgA/4sAiL8pBnBatbuGUDm0xknsXZWZjV0UID9OqFyEjY2rJZaVqPqirs34/u3XHhAkRFsXcvavhLspFCLvRhIxBEILIWa/nBX4IS6scP/rVYy3UuwM2QGTvY3cd9AMuwzBSmSlCyhjVnnlUlKg/hkA50dKAzDMMkIBGP+A/4cBiHx2O8EIQ67I3JRUpz+zYGDUJMDPr3h5AQ1NQwr7Xiavv7+4NAaDWkIEUH/Rd/UpCqu+c5mKMFLR7wAOABjxa0rMB9kTia0dNsBVZQE5MwKQ1pX/FVE5qcelZ8EYiIR7wMZKiQ0r8RlNKMHYt9+zBuHCemMC0Ny5fjzRv4+uLkSXz5gk+fcPw4aK1VuHR3J9XrhFYkF60YbyYIQQMxsAhFIhDhzJ697CzNOMCBOd0ZnTWhybGlGUr5jWHcpMZUopKUadqOb9/g5oZhw2BigocPcfIk8vIwdCiGDMHgweRtRSDUpTu6z8RMPvDNwqzu6OjxZrjIOpNFylDWF30f4EEHvDc5UGmioqCnh5wcPHiAhQthZ4e8POzejV27sHUreZsQ2osqVJWitAIVDDBKUVqGssaXtz0+8OmGbt7w5tIc7oDWmawjCEEf+EzExHCED8Kgjqk0nFN7VlCA48ehp4fqaixYgPx8nD6NxYvh4IBWDk/i7u6+efNm8j4l1EsgApdgCTUtDGF5yH/Ex0aWtz0SkLiP+53QiUtzmCVPM13oAkhCErMxhrLOdIPbSIzk9pssClESkKgrM//i3zzkcf2Izv/9j21KQ6ezoR9zTY15/hzTpyMxEUKt2ymDGfaYQOiocLKnWQe0zvwVylB2G7ev4moUoipQUYrSIAQZwYgoDXtkpqbG8PHBwADOzpg6lbwjCIQOLDMtsc7kusFBrPACL8ZhnApU/OGvDvWLuGgLWwDKUOb6c+OQdpqaGsPPj9OnISBANIZA6PA0Q2ZKULIMy6QgJQpRKUi5wrUUpR0mI/Zj/zu8S0LSBVywg90FXPCDXzziVaDSEU6v3ZWmlsZUVGDNGmzf3jYHDwwMJI86gcAFMrMaq+MRH4zgV3h1HMfjENeR3H52YVd/9LeARSlKd2FXTY15gRfxiCdKwzaNAcDPj4gI9O/fNscfM2YMedQJhPaiGW0zilBMQALT4ScTmUMwJAMZHSYvqlBlDesneFKCkpoaYwrTKlSFIrQD9Hf4pXaalrXN1NUYAoHAbjpI20w5yiUgwZyVgERHqjQDwAvevuj7Du+6oRvVJENpzHZsD0PYTMyMQxwp0xCNIRAIrSUzhjBcjMV5yAOQi1wHOHB9F6yfuY/7f+PvRCQux3LKVfMO7khCciRGGsDgHM7NxMwbuMH159lmSsMxGhMREUEedUJDBAVhyBCIiEDj57Ayzs7o3h0iIlBRwZo1qKoiWdX6MuMP/zd4IwUpCUhIQzoZyR2sf/NgDH6Kp+pQH4VR1BI72NnAZhiG5SHPAAbncb4jdDxrG6XhpHKMhIQEedQJDSEjAxcX1PW9+/YN+/cjIwPBwTh0qD2tKpKTMXgwkpO5NYdZbZupROVjPB6IgUlIykSmEpS0oNVRb7sXeCEMYWbIvEVYJAShDjhmqLntNKy3zZC6MgIXlmk2bWrwVe7sjDdvEBnZPhpjaopJk3DhAqKjaxe5mHSEthke8FABWrSgZQzjX9QYPT290NDQutPspaE93759W0FBod5NtLW1L126FInImgZuDnC4hEsd8MFqpTIN0RhCx4LBwN276NevHQ6dmAhjYwQEYMcOBATA2BiJidyXgc2QGTnItYbf9YoVK/q3TsdWVvasq6t79uzZWgsnYuJWbM1CFjWbgxwxiHXMB4jtSsORGvPkyRPyriS0GHd3FBZixYoGV5CS+uVoM3RI1RNuBosWYfJkUB3yx4zB5MmwseG+DGxGvJlRGDUSI+1h3wVdmHEnzWH+iymYNm1aK51bi/esDe1lWDYQA5djOR/4NmPzLuzqsM8QGx02ObUck5SU1K9dvkUJ3M/atTh3DvHx6NSwcWVuq4WbCQ2FiQn69YOVFYKDcfkyYmM7bmkGwGmcLkXpTuxcjuWucKV+v56CmlVb2traHh4ew4cP79Gjx6BBg16/fk0tLygosLOz69q1q5ycnKWlZW5uLoBTp04xCysLFiwQEhIqLS0FEBgYaGpqWmvPaWlpo0aNkpCQ6NWr18OHD6mFS5YsSUpKcnBwUFFRcXD4Hk3n7du3hoaG60TX0QfRI19HRiP6CI5YwKIjP0lsKdNwcF3ZjBkzyOuS0AJcXXHuHG7cQJcu7ZOAP/5AZCTWr4eLC9avR2Qkunbt0DLzGq/r/tieoMjIyPDw8MTERFNT06VLl1ILLS0t8/Lynj9/npqaysPDY2dnB2DEiBHPnz/Py8sDEBsbq6SkdOfOHWra2Ni41m6nTp2qrq7+8ePHCxcu7Nu3j1ro7++vqakZEBCQmpoaEBBALTx48OC+ffvy8vL0dfWxFBdwwRSmLCY+FamtkSdcoDSUxhQUkPYYAtdRVYXSUlRUgMFAaSnKfoSVcXTEpUu4ehUSEigtRXl5+yRPQwPR0bh7t7H2/44jM22Dvb29uLg4gAkTJjx+/BjA+/fvIyMj9+7dKyUlJSIi4u3tHRYWVl5eLicnp6OjEx8fn5KSAmDevHmxsbEMBiM+Pr6WzLx+/frp06c+Pj5CQkJqampM9aoXJyen7t27CwgILFq0iEpAXbKQZQELOujKUGbG4ElF6kiMvId7v12Zhqkxp05xpsbk5OSQlymhIQIDISwMGxu8ewdhYSgrA0B+PvbswZs3UFaGsDCEhTFwYLulUEMD9+9zq8ZwoszIyHwPlSYsLPz161cAqampAPr27auioqKiojJkyBA6nZ6VlQXA2Ng4Li4uLi7O2NiYmn727H0WytYAACAASURBVBmDwahVEf/hwwdZWVkxMbEf16yxy9XlR/GYTqdTCahFJjIHYIAudJORfAInnOD0GI8pjVmO5fMwj4sfuBYoDcdrDIBjx46RlymhIRwdwWD89/v4EQAkJH5ayGDg2TOSVS2Ej/OTqKyszMvLm5iYKCoqWuuvkSNHrly58vPnzxMmTNDT00tKSjp//vzw4cN5eH6ST0VFxdzcXGZsq48f/wuBV2tNlspbsF+MxauwCoACFFzgEojAOMQtx3J72HP9HdGsHgHcoDEAXF1dyaNOIJDSTIOoqamZmJjY2NhkZ2cDyM7OPn/+PPWXkZHR27dvr169OnLkSD4+Pn19fT8/v7oNM1paWrq6un5+fgCKi4v//vtv5l8KCgpv3rxhPTHlKI9G9F/4i7mkCEWHcbiDaEyzyjRcojEEAoHITNOEhIRIS0sPHDhQTEzMwMAgISGBWi4uLt6/f39FRUVquKWxsXFhYeHIkbV9lGk02tmzZ69evdq/f39TU1OqHxqFm5tbUFCQpKSktbU1KykRgIAwhNORTs0mI9kPfnuwp+NoDItKQzSGQCCwRjMCARAoAhHoC193uOci1wteG7GRUzSmshJ8bK0FreVGwzSbaT2NYfspAACWL1/u4+NDbl1CB4aTzWaIzLSEWMTux/4zOEOVY9KQ5grX67guD3lPeE7G5LZLyrdvuHkTsbGIjcXr1yhld2iGmkpDyUzraUxBAXr0QK9eMDGBsTF69QKNRm42AoHbZYaHXJ7GqdcYzRjG+tCnNOYd3g3EQDGIvcEbf/g7wekqrrZumr5+RUQE3Nygp4devRAejsGDERPTGuWA2rVnrVpXJi6OzEz8/TfodGzejC5dMGoUvL3x+DEYDHIrEghcCpGZFuIEJ6qubCmWjsGYSES+xdsRGLERGw/iIIArV67o6ekJCQnJy8tv2LDhV49XUYFr175Li5oagoOhpobTp/HuHfbtg4UFZGVb61SZSlNV1RbtMWpqsLHB6dN4/x4rVyIvD7a26NIF06Zh/36kpZF7j8BmgoAhgAhQa6TDGkAVEARkgCn40SBLaDZt1KE5NTWVGqLPyQwdOlRFRaW5W93CrWxkxyFuIiaGI7wCFaIQjYmJmT59up+f37hx40pKSj58+PBLKRs1CvfuQV4eEybAywsGBhAWrme1oiLQ6a2VO9XVKC3F0aMQEYGkZFtfGwYDFy8iLAzV1QBw/DhmzWJ96127djU+JpfwWyMDuABJwJGfl48HFgAywCfAEVgERLVTCpMBC+BMHSEkMlOTO3fuWFpacnheHD9+vBGZOXXq1LZt2yhfgAULFpw4cSI/P19ISEg4UNjwvOGD6AdBCJqIibzgPYdzzuucnZycrOdZ84AHgLLyrwVDc3HBw4d48ABHj+LJExgbw9gYgwbVriUTFUUrNbNRdWXHjoFOh7Y2/PwweHAbXZXPnxEfj9hYXLuG6moYG6NbNxg1L2xr69mzEjoC5j/KNLUY9GNCEJAFittPYwYDucBg4D5XKg2pNGOVhizUusZ2fWf87i3ejsGYIARtwIY+pX0SEhLCBML4tPh4JHl6je7F9ABtIWZmWLcOly/j82fs2AFBQWzdCjk56OnBzQ3XrqGiohXPnNkeIyyMYcNgZAR7e4wfj3fvWuuIeXk4cwa2tlBXh54erl2DsTHu3MG7dzhwACtWQFGxWfvr0l7GhwRu5wCgAIgBGfXpUBuQCAwCcgEGkAsMAjpwvBlCQxZqyfHJdsZ2IzBiGqb1Q79FWPQq/1V1dXX28ew74XeiM6LfqbwbZT6qnC3Gezw86N8fK1ciIgLp6fDwQHk5XFzwxx+YPbtVgpXXbPMHsGsXQkMRFwcLCxgZwckJhYVsO1ZRETZtwvDhUFfH4cPo1g1nz/7X+CQvT25CQlszG3gCRAE5wJqGV5MC6L/8qy/eDOYA+QDVA4YB5ANziMx0aBqyUPPo55GK1C3YIgc5AKvoqwCssV8zRHuICd3E3ds9MyVz60t2RxKn0zFuHHbswP/+h2fPYG4OXt5W1BiqzV9dHdOnw8sLc+bgxQsIC6N3b+zf/73J5BcRFERlJTw88PEjrlyBqyv69gUPG27RupHrCASWEAG6AMMBHyAAaOhDLhf49su/eoPWnAfkAerJ5gXkgQtEZjo0I0eOjI2NpQIN1LJQ4wOfBjQAFKP4Ov26mroa7ceYj2IUAyhFaSumTF4eM2eyuWGmob7L69bh1CkkJUFCAlu3IjoaEREYNAi/3sWDjw8bNsDICAIC7M2eX20bIxAYAD/Q9uO4/gBuAtIAHyAN3AS4MN5MG3UBGDp06PHjxzk8L4YOHdr4CpSFWlZW1q5du5gWalu2bPk5Q/l4wTvVbmpAQIC5uXlJlxKf1T6yGrIbdDdw033RyPgYMTGsXQtXV1y8CADduiEiAmFhmDsXffpg82ZoanLa2QwYMIC8JwkNUgVUABUAAygFaIAgUAH4ApMBeeAfwA2waKfPcg3gDulpxgKUhz+3342Uhdq3b9+YFmqXL1+uaaG2D/tsYbsJm/a47NHJ0+mj36eorEhnsE7YpTABdn+ht4/GUMyfj337cPXq9xjlACZPhpISTE2hr8+BMkMgNEYgsOTHtDAgD3wEaMA9YCdQACgCU4F17ZdCDeApF2cwMZthJ93R/REeiUAkBjF7sfc8znOfq2YjGsP0NANw9y4WLcKzZ9/XiY/HnDkIDUVTJcJ24d69e0OGDCH3J6EDQ8xmfheMYTwZk6/jeipS7+DOfuzvOBpTC3199OyJwEAAePwYxsZYuJAzNQY/RxgiEAikNMPFlKN8Ddacx3k1qK3Hen3odyiNqVmaAZCZicGDcfgwFizAli1Yuxa7d2PCBHIbEAikNENKM82gXuvMhhCAwDZse4u3UYjqaBpTFyUljBuHqVNx+DCsrBAVhb/++t4vgNBRyM3NNTY2lpCQmDp1amhoaJ8+feo+F816Rgi/IURmWoW5c+fSanDp0qWOpjEUmzZh2zaMGgUAWlocqzQZGRkd7AbT1dWtORio1iwbOXDggKioaF5e3tmzZ/v167d8+XLydBOIzHAKK1as+PoDMzOzDqgxAGRlYWf33yynKk14eDi5IWvCYDCqWPOMeP/+fffu3alBYJqamrNnzya5R2gufG12pKFDh2ZmZnJsRjA9yhqiIevMwMDA8+fPR0dH11qfn5+f3np+yZygMfVCKc3o0QA4p53G0dGRw6+Dtrb25MmTb9++/fXr106dOh04cEBTUxOAj4/PgQMH/v33X1lZ2cWLF7u6ugJYsmRJUlKSg4ODq6vr2LFjeXl5a84GBAQUFBSsXLny8uXLZWVlpqamu3fvlpKSoo4ybdq0mJiYnJyckydPWltbz5w5Mz4+/tOnT3Q6/ejRo9ra2jVTtWDBgtOnT/Pw8FB1YkVFRYqKis+ePSPvTQKHykxmZmZ6OhdHbBgxYsTs2bPz8vIkJSWZ1pnGxsaUKUDd9Q8fPhwUFNSlS5dZs2YtWbKEl+1OMByoMRysNJxPRETErVu3JCQkAgICJkyY8PLlSz4+vq5du0ZHRysrKz9+/Hj06NE9evQwMzPz9/ePj4/fsGHD1KlTqW1rzVpaWoqIiDx//lxISMjOzs7Ozu706dPMgl1sbKyMjAyDwQAQGRkZHR0tLi6+du3apUuXXr36U0S+Q4cO0Wg0GRmZrVu3AggNDaUmOhhBwD7gOdAFSK7zbznQD0gEvgJ0cpu2CFJpxioNWWfGx8fXlZnZs2eHhYVdv37d1dV169atnp6ev4vG1FQajqk9q2aL5VorY2dnJyEhQU3k5OQ8ePAAwIwZM1RUVGg0mp6e3owZM+Lj45vcz/v37yMjI/fu3SslJSUiIuLt7R0WFsZ0brW3t5eRkQFA1YPZ29uLi4sDmDBhAlVS/w2hws24N/DvJkCWAxLJ1T4WfCCwDGWX+eXLF8o6c+nSpZR1Zr9+/WqtOYpqFQc0NDTy8/O9vb09PDx+F42pVaah0TB+fPue7urVqzn/M5yylgDAw8MjJydH1TBfuHDB19c3LS2NRqMVFBT8+eefTe4nNTUVQN++fZlL6HR6VlYWZeym+HMMBUpyAAgLC3/9+vX3fK4bCjcD4AVwCjgAGLV3Il8RmWEFJSUlTs4IVpI3cuTIlStXfv78ecKECbWsMxvZip+fv6JV48FwoMbUUhqgfZWGK6p6qFIygNLS0g8fPigpKWVlZU2bNi06OtrIyIhGoy1ZsoSpBLVuuZqzysrKvLy8iYmJoqKidY/CdHQlNEkVsADwA0RIXnCLzHB+kOYmYcU6k6qiCQoKMjExERcXf/z4sYeHB7PS/DfSGA5TGs4nMDBwwoQJampqa9as6dKly6BBg969e8fDw9OzZ08ajZaWlnbmzJkxP0zkFBQU3rx5U7MkxJxVU1MzMTGxsbHZsWOHvLx8dnb23bt3WSkGEWqxE9AAxgCPmlpTCvj1cFIC9YUCGPCjHFP0o2VIB3jIbTlJ2maaAWWdqaioyLTOLCwsrGmdyeTkyZP9+vWTk5OzsbGxsrLy8vL6HTWGqTRXr2LJEkREkFuoEWxtbS0tLWVlZR88eBAeHs7Hx6epqblmzRp9fX0DA4OlS5eOptQaAODm5hYUFCQpKWltbV13NiQkRFpaeuDAgWJiYgYGBgkJCSR7m124BHYBu1hbufXCzTz88a/oj4mHXJiZxGymQxMTg/R0LFgAAFVVsLREWVnLNaaW2UyzeP0aY8bA379dyjRbt251c3Pj5Aulra29fft2c3Nzcs+2F0HApho9zYIAO0ACAFAJfAHkgN3A9HZKHh1o/NnjZLMZ0gWg41JRAScn7N/PHo355ffof4ED2lxpbGxsyO1AaIh6w81MB35EucBzYAxwD+jcfonU4eYcJjLTcdm5EwMGwMCg/TWmvZWGGpxIINRLveFmhAHhHwupUeVyNZa0PQ+5OYdJpVkT6Onpubq6zpgxg8vSnZWFAQPw+DFkZNimMb9SacakXWvPCISOCnFo/k0pLy/X1dWl0WjtIOTu7nB0rK0xJSXtnylUmaZtewRwfoBwAqEDQ2SmFdm0aZOsbHuMIE5IwN27cHL6T2P4+HD0KLp1w1MOiPXa5krTq1cvcjcSCO1F27XN/PPPPzdv3uTYjBg2bFj37t0bWaG51pkvXrw4derUgQMHjIzadgQxgwEnJ3h5Yf787xpz7x6cnNClC2JjoaXFEdndtu00RGYIhN9CZm7evGlvz7kRiwMDAxuXmWZZZ1ZVVS1YsMDPz09EpM1HEB8/DnFxnD6NsjJs24bJk/HuHfz8YGLCWTnern3PKioqnJ2dT5w4UV1dPWXKlD179ggLN92+GxQUtG/fvufPn3fp0iU5OZn1wzk7O0dFRaWmpsrJyVlaWnp4eLBipbpmzZoTJ078+++/YmJiRkZGO3fu/OOPP1g/aHl5eb9+/RITE79+/cqKWfjcuXOPHj3KnI2IiGC9g/WVK1fWrl378uVLcXFxe3v7DRs2NLkJnU4vKipizrLeSPzhw4e//vrrxo0b1dXV+vr6u3fvVlNTa3KrzMxMaisajTZ79uzt27fzt2N3mN8MUmnGKs2yzty5c6eGhgZzzHbbUVgId3fw8qK4GLq6MDSEiQmePeM4jampNK1fe1bXcXL9+vWxsbFPnz59/fr1y5cvly1bxsp+ZGRkXFxc3N3dm5uAb9++7d+/PyMjIzg4+NChQyya34wfPz4uLu7z588JCQklJSWLFi1q1kFbUGfbsiBJMTEx06dPX7x4cXp6ekJCgqmpKStbZWdnM481evTo6dNZHZFiZ2dXWlqanJyclpZGp9MtLS1Z2erPP/8UERFJTU19+vTpzZs3161bR95pHbA00wFg0TozJSVl165dT548aYckenlBWBjZ2fj0CSoqePkS0tIcnafMMg2NhlYbnFhSp+/DoUOHtm/frqKiAmDDhg0WFhY7d+4UFBRsfD/U131QUFBzE3DgwAFqwtDQcMaMGSwaLw0aNIiaEBQUlJWVLS4uZv2ILauzbVmQpHXr1jk5Oc2bN4+apTw6m4Rpufbhw4dr166xbkb14sULT09Pys3aysqKFX1KT09/9OhRaGiomJiYmJjYsmXLnJyctmzZQhzeOprMDBs2LDAwkGMzYtiwYU2uw6J15q1btz5//ky1B1RWVgJQV1ffvXs3699rLeT1a+zaBVFRyMnh/HnU8Y3mdKUBWklpxo4dW3P248ePOTk5TA/jvn37FhcXp6SkNF5ryhYYDMbdu3eZBt6s6NPatWvz8vKGDh0awXKZr8V1ti0IklRaWpqQkDB27FgtLa2cnJyBAwf6+fnVCo/WOIcOHerRowdTU5tk0qRJJ0+eHDt2LB8f39GjR1mxa6OC69Sczc3NzcjI+FEJGdRAxJm5wNEasxE/3JwJnCoz3bt3b4PHuFVh0Tpz+vTpzOqy58+fjxkz5t69e507t/4IYn19VFXBywsLFoCHfdWhWVmolfjCQvDyoj4D4JYrTVgYJk6EmBhav8cE5XNMxVkBQH0XFxYWtsEt5O7uXlhYuGLFChbXnz179rhx45KSkhwdHdesWbNz505WtmLW2T569Ij1tM2ePdvOzk5GRubJkyd//fVXXl4eK9Er8vPzq6urjx8/Hh4erqSktGzZMnNz83/++UdAQICVg1ZXVx8+fJiKCsoiHh4eY8eOpeoDe/fuHRUV1eQmf/zxR58+fdavX79nz578/HwqG2tccSriTBJwpM6mK4C1P6bbZXSmObAKGPpj9g7gBVzirjcnaZtpBixaZwoLCyv8QFpaGoCcnBwrLcy/yujRSE/HokXs1JiqKigqQlQUdDqKikCng06HrCx+xClhG/364eJFNKeJm3Xevn1bc1ZMTAxAQUEB80UJoFOnTq19fdauXXvu3LnY2FjWjyUiItKlS5fhw4f7+PgEBARUVVU1uQlVZ7tr167mJm/UqFGDBw/W0NCYNm2ap6cni4ONqEo2e3t7bW1tOp3u7e2dkpLC+lDBqKionJwcFttXqIKIiYlJz5498/Lyvn79ampqamRkVFZW1vhWNBotLCysoKBATU1t+PDh06ZNAyD9X32yOWABKNa3KT9A//FrlwC4m4CZQBwAIA6YCWziujcnkZkmePToUU0LgAcPHiQmJlLTzs7ODAZDR6cxtyE9PT0Gg9GC+u6WEBKCH6Gx2AYvL6ZOxbFj+PYNDAa+fcO3bxg5EuHh7E9/375QVW2NjLl+/XrNWQUFBVlZWWZM+2fPnomIiKirq7fqxXF1dT137tyNGze6dOnSsto2fn5+VtoSmHW2CgoKVKlaXV391KlTzToc60GS6HS6urp6ixs5Dhw4YGFhQRUoWSE7O/vRo0eOjo4SEhJ0Ot3Z2fnNmze1PiPqRVVVNSIi4suXL+/fvxcSEtLU1GStguEwoAQMBHYBVe3xBuoDXATmAr7AXOAi0IdUmhE6HMbGiI3FlCnfZ8vK8PAhWGjK4hzq9tFauHChl5eXoaGhoKCgh4fHnDlzmmz/B1BVVVVRUVFRUcFgMEpLS2k0GitbAXB0dLx27Vp0dLSEhERpaSkPD0+TdUoVFRW+vr6TJ0+Wl5f/559/3NzcLCwseFgop7aszvZXgiTZ2dkFBASYm5t36dJl9erVGhoaurq6rGz48ePHiIgIViJPM5GXl+/cuXNgYKC3tzcvL+/u3bvFxcVZ6dD86NEjWVlZOp0eFxe3cePGffv2sXC02YAdIAM8Af4C8oCGahFbL+IMpTRrAXsgkBs1hsgMgQVMTLBjx3+z9++jd28ICXH1OXl4eBQUFPTu3ZsaN+Pr68vKVoGBgUuWfHdZFBYWlpeX//jxY5Nb5efn79mzBzW6YPXu3ZtZlmqknufevXs7d+4sKChQVFScOnUqi31whYWFmTW0VKRnFutsT548SXVo7tq1q5WV1Zo1a1jMTBcXl7y8PH19/bKyssGDB1+6dInFhpkjR45069bNwMCA9QtHo9EuXry4YsUKJSUlBoPRq1evS5cusdLT4datW15eXvn5+VpaWnv37mVNRJk9NTSAfMC7YZnJbc27NR7YCAQDKwENYATXPW7EOrMJuNU6k72oqyM2FioqALBuHYSFsWoVFyW/pKSkLdrGCNxN0M8RZ2prIrAeSG/zVMUDc4CLQF/gKTABOFav0hDrzN+ONWvWqKqqCgoKysjITJkyJT09nbvPx8QEcXHfp69d49DBng3D4nBIwu9KFVBaI+IM1aGgGjgMpAMFQBzgAbRLqHVfIBSgOt/3BUIBX67LXyIzrcIvjt/mOKjmGQAFBUhJ4ZoROT9gpWMu4TcmEBAGbIB3gDDAHF56EugHyAE2gBXQLqHWL9XozQxgKNf1ZgZpm2GdZlln/sr4bQ6VGScnMBi4fh2GhuDl5a7ks9jTr27tMbUhg8Gorq6mltB+wFzOw8NT05uL2qq6uppGo9UcFUjN0mg0ahMGg1H3rhBiocWLl5e37uFqzjJTy8PDU7MDWK2zo9PpVPfoWqvV2k+9Z8ecZh7ov3JBVRU1qLPu4WrtuebYz6qqKmYyGtmQ9WvHPDsq55kprK6uZl4U6ojfvn0DHAHH+j7Br5H3HvfJjLq6el5eHgfmgqSkJOVU1gjNss5ES8dvcyjS0ujSBS9fIjYW9Z0s59NkA2S9r7OqqqqYmBhvb28JCYnVq1cXFxf7+vry8fHZ2tq+ffv23Llzw4cPr9syX1FRQY3kcHJyevLkya1btwD0799/zJgxmzdvpqSi3kbyJsd/UB8uTZ5dXFzc4cOHAdjY2FD2FvWe3ZQpU2xtbQ0NDev+dfTo0ZiYGBERkZMnT9b6q7KyMikpiWni6enpycvLy/R5S0tLc3d3v3DhQkOJTElJWb9+fc1BOZaWlvPnz6fGn9WbzhZcOwaDsWzZstmzZ798+TI0NLRnz54mJiZRUVGvXr2aNWuWjo5OcHDws2fPbty4QTSgDWjTLgBSUlIcKzO5ufX3FanZBaBnz54eHh69e/c2NjZetGhRUVHR5s2bZWRkoqKi9PT0am1YXFycn59Pjd8eNWoUi+O3OZeVK6GggIMHER4ODQ3uSruwsHBJUyHd6HR63QeBj49vyJAhysrK69at09TUrKysfPLkyY4dOz58+CAiIjJixIj58+erqanV2lBUVLRv377W1tbl5eXdunW7cuVKcXHx7NmzHz582LlzZ19f3/DwcDU1tfLy2l1gWRl9IigoWFpa2mTKaylN3XXodPqVK1ca15hVq1b17Nmz7oaTJk3asmVLI0rTrVu3WmdHJaBxjaGyrm7hiRWZqXsJkpKSFBUVv379evny5ZCQkNzcXGlp6dmzZ5uZmdHp9MzMTD8/vz179nB9TcMPOLkLQJuWZiQlJTkzF1hMGIvWmRQiIiLUEG4fH59JkyZt376dl9vqmn7CxATe3igp4TqNoUoPLduQwWDcu3fPwsJCQ0ODUh0tLS1NTc2zZ8/26NFjwIABcnJy9Xy70WiTJ0/evHlzamoqgMDAQDqdPmzYsGHDhsnIyGzevFlJSYmNLvTMCr2aUC/uw4cP79+/v6ENm9QY1QZGyx4/ftzS0pKpNOvWrfP09Ny8eTOlNMrKyvWeXZMac/LkyVrmYy3/fKbRFBUVAYiJifXq1evcuXPUdezZsydV9FFSUho8eDDV0ZzQoWSmyYopDodF68y6ryoWx29zNIaGmDIFFha/1ePBy8vr5OR08uRJVVXV8ePHl5WVhYeH37x509nZ+cuXL8eOHavXab+6ulpCQuLWrVuGhoY9e/ZctmxZWVmZq6trXFzcq1evzp49e+TIEVbqx1iXmZMnT86aNasRpalXilqmMawoTb13e5MaExMTw8MmnyQGg3H//v3BgwdnZmaeOnWqqqrK2dn57du3p0+fXrhwYZcuXe7evXv48GHi0Nw2kJ5mzYCyzrx69erIkSOZ1pl1G2YqKiq2bt2alJRUUFBw79491sdvczRCQhAVRdeuv9dXGB+fq6vr+PHjV65cef78+VOnTvn7+0+ePNnV1dXOzo6Xl9fHx6fuB3hVVdX8+fO7du2qq6v77NkzAwMDY2Pja9euGRsby8rK2tvbL1y4kI2lGRqNFhkZWbcRhVKa+fPn44dTOLs0hqk0q1evZnbWX7duXVVVFdX4VO97v0mNOXLkCBuv3aZNm8LCwvbv3//48WMrKytXV1crK6v79+8fPHgwLCzM09PzVzxyCERmWgsWrTOp8duGhoby8vKWlpZmZmZ///13Rzj/4GDY2HBjwllxnKz/8eDhkZeXt7e3nzNnjouLi5eXl7W1tbW1tby8fJ8+fezs7Gg0Wt2d8/PzKyoqLl26dM6cOSEhIWPHjh0xYsSVK1fMzc1XrVolLS1dVVXFrtohKpH8/PxNKg27NKamYrGuNDVf6G2gMTQaTUVFZdmyZffu3Vu0aNHo0aPl5eXHjBmzcOHCGzduLFu2TFNT09HRkbzTiMxwBC2wzuTj4wsPD8/Ozi4tLU1JSfH29hZlo2d+O2JighbZPrb/Xf5rRUkpKSlxcfH09PSsrCxJSUkqgoCAgICUlFRDlVGzZ8++fft29+7d5eXlhYSEFBQUpKSkevXqFRERsXjx4l9PUq1X6qpVqxpXGj4+PnaVY3h4eGoaKterNI0UntpAY5iPYXp6+tevXyUlJSk3GlFRUUlJyYKCgvT0dOryUWsGBQUNGTJEREREo06745UrV/T09ISEhOTl5VmJPE0gMkP4TWlx3QhV5jh+/Pj69ev9/f3d3d09PT3Dw8MBZGRk+Pv7f/r0qa5gVFVV/fnnn9evX588ebKlpeWOHTs8PT2tra0nTZr0+PHjUaNG2dvbs+h/zCKampqNK00jqtbcujIeHh4rK6vGlabFGsNiGxIrF+7u3bv+/v59+vTx8fF5+PAhgPv37/v4+AwaNMjf3z8+Pn7vQWeeZwAAFhBJREFU3r3Uyg3F3m5Z8GkCkZlmo6enFxoaSvLh96SysnLv3r0uLi5btmxZuHChra3tggULVq5cuW/fPl9f36dPn7q7u9d9gzMYDCkpKT4+PklJydLSUhERETqdXlhYqKCgwMPDIy0tnZSUxPa2uiaVpmUaU+97f/To0Y0rTb2FpyY1xtLSko3ZsmHDhoULFzo7O8vKylKWzJ6enkpKSkuXLl24cKGHh8eJEyeozwhzc3MLCwuqZ1pNmMGn5eTklJWV9fX12/4ONDc3p8JXDxgwAMCdO3fMzbkvgieRmVbB2dm5e/fuIiIiKioqa9asaXHbAIEttPgbubKycsmSJe7u7vPmzRMQEBATE7O1tbWwsHB0dLx+/fq6devq7RNMdRywsLDYvn37sWPHFixYYGNjExISsnnz5smTJ7u5ucXGxrZGl5DmKk2TGlM3MizrSlNXepvUGNbM+Vktv5qZmQkICGhqai5btkxQUNDR0VFcXNzFxUVDQ0NAQGDcuHEbN25spIWMCj4tICCgpaUlKSk5evTo169ft/2tu2nTppkzZ1J9FOPi4mbOnLlpEwlrRgAAfPv2bf/+/RkZGcHBwYcOHSLWjdwLPz9/ZWUl80OhsrKyurqan5+fh4eHmm7oJSUpKVlYWFhWViYgIMDHx1dRUVFQUCAjI9Oq4wGbpTRNasw///zTiGY3S2loNFqTGsPeJkzqkjEYDKqhiOraV1lZSUlL4w1I+Dn4dEZGhoqKirm5ed0Rta1Nnz59Ll68OHfu3IqKirlz5168eLFPHxLWrOPSLE+zAwcOUBOGhoYzZsygir2EdvuYamnRgZ+fPyQkZMmSJcXFxS4uLsXFxd7e3rGxsSEhIf/73/88PT3rHf5SWVl57NgxaWlpW1vb7OzskJAQBoNhYWGhqqp68ODBjx8/UnFuWlVpvLy8IiMjAdQdT8OkSY3p1q1b3ayrrq4+c+aMhYUFpTSUSDA7K1PjaRopJbSNxjAYjJMnT06ZMuX169fe3t6CgoIhISFUgXLlypXdunU7ffr0tm3bGmm0qxl8GoC3t7ekpOTLly/rHYstJSX16wokICBQ14tkwIABr169qqysLC8vz87ONjAw0NHRoZqaiMzUz6NHj2qFy+UQhg8fXtctphbN9TRj3u53794dNWoUeddzI7y8vBMnThQSElq0aFFFRUVJSUlsbOzu3bsNDQ2HDBlSXV3t5+dXVzB4eHgSEhKGDRv27t07VVXV9PT08vJyNTW1Z8+elZWV3blzZ/r06SzGKGtVpWlSY1atWuXj41P7lcHHR3WCaERpGgpr1qTGsFF9/f39k5OTk5OT+fn53d3ddXR0NDQ0PD09fX19VVVVL1265OTk5Orq2ojMsD6wpiGrql/n4cOH8fHx1tbWOTk5cnJyR48eHTGC+8KatanMXL9+ffny5RyYCz4+Pk3KjJycnI6OTnx8fO/evQHMmzcvNjZ25MiR8fHxbm5uDW3l7u5eWFi4YsUK8spuR1o8SIV6y4wePdrLy2vOnDmdOnUKCgqi2mPk5OTmzp2bmZl59+7dujLz9OnTVatWPX36lJeXd+rUqcLCwsePH6+oqNDW1ra3t1+9enVDwxhbXDvUuNLUS5Ma05BaUEWWRpSm3g2b1BgnJyd2jZek0WijRo3avHmzvr6+r68vNeqgR48ezs7Ozs7OJ0+edHd3nzZtGiUzDcXebnHwaTYSHx8/Z86cixcvGhoahoeHT5gw4dixY1ynNG0qM8OHD6/7ccQhpRlWVmuWpxmAtWvXnjt3Lj4+vlOnTuRdz40yQ5GVlfXo0SNtbW0BAYFnz54NGTJETk6utLQ0OTk5Pz+/3k327NmzbNmy6OhodXV1Pj6+/Pz8tLS0R48eLV++3NXVdeXKlawMy2f97Hx8fOp+wNVUGhY7obCiMSwqTV2a1BgdHR02DsvPzMzU1tYWFBR89eqVlpaWuLh4QUFBYmKisLCwtrZ2enp6WloatWZDsbdbHHyajfj6+oaGhvbt21dHR6dv376hoaFeXl5cJzMkSHMT1HRovnjx4sqVK3v37j1hwoRp06bJyck5Ojq+fPkyLCys7oaurq6RkZFxcXGUZQChHWmZyy8AERGRf/75Z9euXXfu3PH19f369euWLVtGjRo1d+7clJSU/fv3y8jIBAUF1TIVFhQUpNpsVq5cmZCQEB8fD2DgwIETJkxYs2YNfgQCqGsa3TKHZmFh4SlTpvTu3bveqoKkpCQvL68TJ07Ua5ncpMbUa+3MXGJpaTlx4kSLH053UVFRwcHBx48fr9cyuWYu1asxdnZ2jR+O9WsnKio6fvx4BweHx48fx8TETJs2bfjw4bGxsWfPnjUzM+vTp4+/v7+IiMi5c+c6zNuPODR3EChPs6ysrF27djE9zert9Ono6Hjt2rXo6GgJCYnS0lIeHp62/w4i/DoVFRUeHh5JSUk7d+40MDCoqKioqqrasWNHWlrat2/fpKWlXVxcjh49Wvuh4uPz9PScMmXKq1evjIyMLly4UFJSMnXq1KioqFmzZh04cCAyMnLcuHHsSiQvL6+Kisrz588bKdOcOHGCXeWYWmYz9ZZpGqp+bFxj2Hvt1q5d26NHDx0dncrKyjNnzty4cSM7O9vU1HTWrFkyMjJSUlLr169no+UPoRFIh+ZmwKKnWX5+/p49e968eaOsrCwsLCwsLDxw4ECSe9xIdXV1cHDw9OnTqaF5/Pz8RkZGw4YNCw4OTkpKsrCwUFdXr/eVSqfTx40bd/HixQ0bNhw9ejQyMnLFihWxsbEDBw5UUVEZPXp0vdHJWsyqVauYSlP3X01NzcadOlnXGEpEa3ViDg8PP3PmDDVL9XJupNtV4xrDxkAAPXr0ACArKztu3DgREZHg4GBxcXEzMzMZGRkAurq6s2bNIjJDZIYjaIGnmYSEBONnnj17RnKyHfkV60wzM7O7d+8+ffqUKtw8fvz49evXZmZmqqqqt27dqneMCIPBuHnzpp+f37p1606ePKmnp6esrHz+/HlXV9fQ0NCwsLDExET2jsAQFRVtXGkaqY5rlsZQ/P33340rTUMWao1rzJMnT9j13mcwGG/fvgWQm5t779696upqMzOz8vLyBw8eUJEVk5KSSOhMIjMEAttocVgzPj6+LVu28PPzb9iwISEh4fbt2zt37pSXl9+yZYu1tfX//ve/gwcP1n0zVlZWXrhwYeLEiV+/ft27d6+7u/umTZs2bdokLCxMhQru1atX416WraE0LdCYjIyMensYS0hINK409Q5UalJjduzYwUZzhN27dyckJISFhUVERBgYGGzZsmXIkCHnz58PDw9PSEjYuXPnv//+SwIBtA2kCwCh49PiLgDUwrdv327evDkzM5OHh0dHR2fp0qWqqqrfvn2LiYk5ceLE5cuXazXmi4qKDhs2zMrKKj09XUtL6/HjxyUlJSYmJvfv3+/Xr9/OnTsPHjzYvXv31gjSXFRU5OXllZqaWqtHQL1N66tXr25cY7y8vIKCgmrZFjB3lZ+f7+joWCuKDNUjoN42+ZycnMY1pt6+Ay27dlSl5ZcvXyhpnzlzppycXHZ29okTJ+Lj44uLi6nAP+PGjSNdAEhppv0h1pmEbt26GRgYxMfHJyQkDB06lBpuQqfTe/fuTafT65ZmqEEbq1evdnNz+/PPPxMTE3NycszMzDw8PBYsWDBz5kwNDQ02hjVrcZmmSY0pLCysq3zMGsgmyzS18qRJjWFvVnTt2jU+Pv7Lly96enpULG15eXk9Pb3s7Ozr16+rqKi0/SCY3xYiM61CIxEsCG3PLw5SiY2NPXTokIODw8yZM4OCgu7duwfg06dP58+f//z5c90XcXV1NY1Gi46ONjMzW758ua2t7dSpU9evX29kZPTkyZO8vLxTp06xMUhzi5WmSY0ZMWJEvQUs5uD5hpSmkcawttEYBoPx/PlzBwcHFRWV0NDQpKQkAK9fvw4NDe3WrZuDg8OjR48uXbpEHg0iM1xMQxEsCO1CixtCKisrIyIi3N3dDQwM3NzcXFxc1NXVPT09L126dOzYsejo6GnTptVt+KEiz2tqaqqqqt69e3fMmDETJ068ePHioEGD/vjjDzc3t1mzZrGxNFO3OMWi0jSpMQsWLKi7FS8vr7KycuNK05DMNKkxbDSbmTBhgpub24IFCz5//uzv7x8REeHn51dQULBo0SI3Nzdzc/N629UIRGbak1OnTvXv35+aXrBggZCQEFVFHhgYWDfeUUMRLAhcVwxavnz54MGDXVxcFBUV1dXVHR0du3bt6urqGh4ebmFhMWnSpLpb8fPzS0lJubm5TZ8+/dixY2PHjh0+fPjFixdNTEw2bdokJCTUiLVzC6iurqZGrTdXaVqgMRRLlixpXGnq7bHWpMZYWlqysU3e0tJSUVFRX1+f8gRavnx5Tk7OvHnzBg8erKioOGfOnPHjxxOZITLDWYwYMeL58+dUb0imdSY13Yh1JoGrYTAYycnJampq8vLyAHh4eBQUFBQUFJKTkwsKClRVVRuyEVq6dClVfFFWVhYSElJUVOzcubOhoeHBgwc3btxIo9HY2NOMwWB4eXk1rjSsVBuyqDEsKk1dmtSYZcuWsdHTTFJSEoCwsHDXrl35+PiSk5MFBASUlJSEhIQASElJ1TvmidARZEZKSorOYTBDgjcO0zozJSUFP6wzGQxGfHw8kRkOp8XjZvj4+Hx8fPz8/IKDgwGUlpYeOXIkIiLCx8fHyMjI19eXaqepe7hhw4bdv3/fxMRk9uzZ3t7eVGA0IyOj169f9+nTZ8WKFWwcN8PDw/Ply5fGlabJwhPrGsMsATRXaZrUmL59+7JRemNiYgC8e/duz549lZWVPj4+RUVFgYGBlJXZ1atXt27dSjo0tw1tbTbTeo7ZbUBzrTMJnPIx1dLRGHx8fLa2tp06dVq+fHlVVdW3b98CAgI8PT0nTJiQmZnp5+e3cePGum9wBoOhrq4uJCTUtWvXvLw8GRmZ6urqrKwsbW1tPj6+bt26ubm5sXGACA8Pj4GBwe3bt728vFatWlXLQ49Smsb7AjSrHFNVVfXixYuePXtSSuPv7+/q6rp9+3YWyzRtoDEUa9euzcjIePLkyfv371etWtW/f/++fft6eXnt3LmzV69eAQEBY8eOffXqFXk6SKUZZzFy5MjY2FiqlkxPTy8pKen8+fPDhw9vjYC7BDbS4o9WGo0mIiIyZ84cHx8fR0fHzZs3b9myZerUqVQfQmdnZ0VFxboyw8fHN2fOnNmzZ3t4eAQHB1tZWVlZWZ05c8bNzc3S0nLu3LmPHz9m7z1jZ2dnYGDQSJmmkR4HzdIY6uy8vb1fvHjx//bOL6SpN4zjZ24letOfJYIWGXUTXRQhCo6FHrpISKKMuQqDQEHIkq6UmulKZmx2XGTL5lospGJmJRqs4TLccA3DXQSh01ojjkeKlNwhN4/b28XLb8TO2Zmu0/z9frzf+3OxcfZ+9jzP9/0+PDVNolotKWMEDJspKyuDybZXrlwpKSnJzs6Wy+Uqlerdu3f19fXl5eX19fXop4Ew868TjM602Ww4jseiMzk7ZpFIJBQKxTZY/D33KlIatGHDBrhuORwO//z5E45VMjIyAABx2cwxxQKHMAzLzMzMysrC/lkYDGcGgoufNCkzhvPc7+3t5ScNJ9WSMsZgMAg4k6dpOhwOLy0tMQwD3YBisXh5eXlpaSkcDtM0jTpmaRNKaF6DYHQmTdOx6MyXL1+yozOxxBsskNZFKdu6AADLy8vd3d0qlcpqtS4uLqpUKgDAqVOnPn/+rNFofvz4wTY0r6ysEASRl5d37ty5xcVFi8USjUbPnDkjlUqfPHkSCATkcvnfWNIMhx+JumcpMObt27eJzn2YzdzY2MjZPeM8wZMyxufzCVXkAQA8Ho/Vah0bG1Or1QAAmUw2Ojp67dq1w4cPw7VyKUcQIa25uERhM0j/e2VnZ8clprDFGWqycePGq1evGgyGrq6uEydOhMNhi8VCEER1dfWnT59Ikmxvb5fL5XEPZmVlDQwMFBcXV1ZW5ubmNjc3Mwxz8+ZNv99vs9kcDsfo6GhnZyfDMOxWT9LPwh82g2FYd3e3y+WSSqW/k4YzjuXs2bP8jOnq6nr27FmisBmIihhpMAy7fft2IBDo6OhYzb4ZNmP0er2A+2bsdrtMJvvy5UtHR8fk5OShQ4fg6lvoTXc6nRcuXJienk5Uj/7nhMJmkJDW9S1P9T9yJBJpbW1tamqC92MyMzOrqqoUCkVLSwtchck5uBaLxXa7vays7Pnz52azuampqa2tzWg0Dg4OFhYWut1urVb7l8Jm1tQ9S8oYTvLF7Zvh6Z4lImgixgj591kkkslkGIbt2LEDmjhaWlpycnJqa2vhbTa5XN7c3IzuzSDMICGtd7EvEhUUFMzOzn779g3DsGg0+vXr1/n5+YKCgk2bNpEkGQwGOR98+vTp0aNH3W53IBCQSCQ0TVMU9ebNm+rqapPJhP2Bx1pA0iRlDOd9SbFYHHfnn00adqGWTsZgGAYAgPuzQ6EQRVEAAOjqnpubg7XgwsICSZLoDUeYQUIS7NBJ7UGJRGI0Gh0Oh0ajIUny48ePOp1uenraaDQqFAqLxcIZE8kwjN/vV6vVr1+/rqur6+vrGxoaUigU79+/b2xsnJubk0gkAjrNOD/dakiTlDFHjhzhRO/Fixf5SZOo+8fPGJqmBRxZmc1mkiSdTufdu3fz8/ONRmNOTo7BYBgbGyNJ0mQyPX78GLkA0iNkAUBCmOHDDI7jt27dunTp0vXr1xmGmZ2dbW9vP3jw4IEDBwAAfX197LpELBbr9frjx497PJ7CwsLh4eFQKFReXv7ixYuampr79+/39/dXVlYK9ekikcjExAT78tbvjoBVfgNJGQNVVFQESRMb6cc5AjgzDpIypq6uTkD6Dg0N+Xy+79+/b9++vaGhYdeuXTt37uzs7Lx3797mzZt9Pl9DQ0NNTQ36daBqBglJiLf8zw6vkpKS8+fP9/T09Pf319bWwgN969atFRUVeXl57BMcep1LS0tHRkZ0Op3BYLBara2trePj4/v27ZNKpceOHRN2STNBEBMTEzw1zWrCZlbJmDjSJKpp2KRPyhgBc5pFIlFRUVFPTw9FUUqlEu5u2L179+nTpwOBgMlkkslk7ChCJIQZJKT10YcPH169eoXjeHFxscPhmJmZwTAsGAyOj4/Pz8+zGy8AgMHBwRs3buh0uoGBgb1790qlUrvdrlarHzx4YDab/X4/z/QiNYjykyZpNbN6xsT6WmsijUgkShtjoGZmZnAc37Jli8vlgm1DiqKcTue2bdtwHJ+amoKLt5EQZpCQBFDKTbNIJOL1etva2oLBoFarhfklBEF4vV6bzfbo0aP9+/ezS6WVlZWRkRGlUklRFEEQGo1Gr9dfvnw5Go1WVFR4PJ49e/YIeGkjIyOjqqqKnzT89dya6phoNApdDDyk4RmxpIcxAID8/HytVnvy5EmXy9Xb2+v1eh8+fOh2u5VKpVarzc3NvXPnDnKapUe/AI+cgXmwpNdXAAAAAElFTkSuQmCC" alt="Example" />
Example
散点图
# 文件名:spectrum.txt
# 示例光谱数据
500.0000 24.3323
501.0000 24.4242
502.0000 24.3711
503.0000 24.4060
504.0000 24.3026
505.0000 24.3572
506.0000 24.4649
507.0000 24.3331
508.0000 24.3422
509.0000 24.3661
... ...
接下来就用gnuplot来进行绘制:
plot "spectrum.txt" using 1:2 with points
得到的结果如下:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAADsCAMAAADTjJroAAAABGdBTUEAALGPC/xhBQAAAAFzUkdCAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAWhQTFRF////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/wAAAAAAAAAA/wAAAAAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAAAAAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAAAAAA/wAA/wAA/wAAAAAAAAAAAAAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAA/wAAAAAAAAAA/wAA/wAA/wAAAAAAGQAAUwAAEwAA/wAA/wAAVQAAngAAPwAAgQAA/wAA/wAAJgAAXgAA/wAAaAAACgAAIQAAKwAAEwAABQAA/wAAAAAAAAAAAAAAAAAAAAAAAAAA////2zNaxgAAAHZ0Uk5TAIi7zDMiZqoR3XdE7sn6+fDs8e/041Xkmcd1IpdcRI91EWkghoeZfp+mw9a9wqxOl7SQpzNyfKSYoJFxUFzKQFvI7c6+n2ZnP7nPvrLVMMaux9GtfbfS2o/eS1B+mc5zluvW4LjLuNWgjqfv9ffx7XjVh+hLfpNDH+wAAAABYktHRACIBR1IAAAACXBIWXMAAABkAAAAZAAPlsXdAAAVGklEQVR42u1di5/buHEG+NCLbuxrUlk+NghIl1Dta7pHLe8ay2R3N9e1195kz63d9tI0vT6Tvtu0zf79HYCknnyB4lPWZ/+0uxpBIj8NgJnBYIDQCSeccMIJJ5xwwglHDqyoGn9U9LavpG8YDNFojCYYGcO2L6VvMEDlHiBs8McTJKErA9A9A9+Lv37rOw8fPnz0SSp++7ufZOJ7n/RW/gju/OHvSDCHFdA4NMDTUOsez3JebmTLFdRv+UNUGFNBlWbEY92JusKYqYqiIH2M+TyLTtRJUBdhZIzCX07UlcaTT8u3PQZ8Ur5po9ThaFrfhT7IehZ+7jY08O6Lp+EzocEvgb5QNxmowAQfKzRxg4bOhw4dGbxbadEQAqJIGnU2+CkaxoxGYw1MdetxZ/ZAUBca/Pswe0+drhtoquLx76pYwWikYGXAJywDjw1DHX4f7l4xVKwO4Sl4NTwLuqRo8JM3DHVN4e11A8PrhhgazyJ+McjuI4N/H6T31Il7nCD9B3CfKqgSQmM8BTUCvTJmITPwAHxxIoTWDWeTlfaFL+DtR0DdjP8+RdoGdeLbUfY7v0koSSOvM9SZyLRyXjKaqcMfGHzqw9xOEgY6pw6vqDM2qNMejHao4+05dfx3xVhNoTge6xItgh5oHTGJDZdJMvgb6Ag/WWndgCvOZEWdtkudwgMVG9RpCm+PI+qgsbFF3TTF1Oo6dU9/jzhszihBJP1S+Vin/j6MdYP1WKdpMNZhbqcP19QZCjwLvXNowM+wqXgBb69F1Ikn1tTdRwa/DDpBHSHUos+ef/YHP/xDxuZnqa+DGRIbmogW8hkWiQlXDyXbr9T07Z/hC+IZljfVDP3A2JkMdVGoU43sn+qo+5y5zKHEoYwuCOgdNwhSOm6ei1IUmoolzbg9SFAXWj4wJkTuf1XUEdtl57ZH0RdfuuyPfnTOKLVg5KvmzWuEBHWh5QO8Daql7ilhi/MXbElM9JJSn1GfkoAcFXWh5TNSlWjs/eOZYawHj/IIzMAyKaV8fr2Abru4pF9eued2nq3SIkZw58aPJRoIywdmrlFodX/1Jxjjg1d4LMo7KNienCkLecim1LFpt7VOhzvH3y3++tDyAYMIhb5eNR02uHbZK+DJi/4moH8vqUNfd5o7DokOuwp1Rg5LJdSZlDG6/VSwYIxdgAfkdZu9EnadEXXSKqi7mDP3R/72c6ZFyI0P9srcD6AP37RNURraNokJCRKetBBx3jx/67oXPqFtUZOHdqkzYWSzk0VgIN+6tz/5qXvl+HJv2hRa17pUiWnadwym33lXjZR2qbNQ1kxAPPDQlowIm6V7aJc6grJUCmQkeEqW/sKijROTj5apy7N8PaAPfLOA0e512zaps7j5m0cJIbfu1+4t7Z6N16rWee8Ys828F80X7vm7pX0GXF80zE4m2u2whQIkHjnj0Xdqet2y8dqkjhAaFPEVYB42X7nuNZszv0NDnnSUGN8DxJ+VzLDFAKPi87d/+mfPr5a0O2aKdJQYoIWrbxVQJ8GDTQm1l+B8WKgjmicdJUZ8QVP83ewSthfQxeVr9p7NA+J1gj3pKDFoX7RIXk2oUwLQvX1GgbylR9rlTjbUGa+Pq1FQvaoAe2F4yPSdpetc37KWTWTZAHu0Pq7Fy+St5NfZhJ0ztjinpPX5QjpKjHCc1HK4N1GijYf84GJJmV14dq4Nrdp1ZbgzA0o+zOc04KGDPE+kVrRrEpdrxkOkTyn3f1vVvPao485/Kb0DvqyAMHbJQAFbjCC3qHWec8hYvzhn7jIoq7lVoM0O65e/bZO6z57fsj+3aXuL3e1RB86/f8AwT4jpEz8A6oLyb3IQWp0mDmlsmugGZorXPLmnnYm2t9RxeMDd2UfYYauwaT1CvJZ0rufUgX2zYPPAa8efbY26rB0JxSEs44t2jDv5XOKBUlEucSVjlBVcMua2EoOSjhJrSrzN5VDqqklh8mCuYJdtpAekUTfZD8RFZRMGRpT53QmtAwSUUTuQitZXglTq1OH+jikeJcZ8c5r46y/+UlGUsgn0FljEVXWzyzlj78hdg0aKxvdZPUoV68qD2Xb4PMwlHsQ7+LqidQjdzc/d92zecPQzTeums/FsaqjbT/HHAY7TsLtDHdjGNsnNX6kaadTNpvxxq8+GUWKxPUv83ZkN7ND5n7kvrp3X3dA6sWEyebmrolziSnWEIOIQ1mxOTzJ1A2UMGjbOngM6RZ0ZvFhcsaBJvUumjm/zNoyc2fMg6vgEW+F98ixGFJC76glKRzJ1fFspjjd2p6FLWifej3i0SesumToD8TXanP2TB1JXdcDDsl5Td/FNbr5eZUibJvTRCNfZYesBDRijTSWSpVA3GutDrGZnRRxGXR335z+/+tnP3pw31GdTqDMwUvN2PB9GXS12xFMCtjFPwWui16ZQp6uTma5mpzEdQl010bp9eMEH5rKXjTgWqY4YHg2m2U0P0zr7kMZZ8Bj9ZkkPWKgsijTqsLJfuyIMdd7f31cRr6O13dJfLVzmNpDOkzbWJRSyCEOd+orQA6gDr3Ne13KMRWzGXjSwPJtCnZZgDkdlE2Z4UkVCbI1KYbGAOn7taQFpHVadJXgTPNRpzAwcquRhCbF1WhCiSA+pMeE4MyE2yZtYFYwK43WNJ8QWhoXMC/OmRsUulxA7MSoJddY9iPPAZ81R47QOOxgrg53FiTDUqVVTNqFe6izbda8+v6a1WsZpJrGC4F9KqDPqpAdQ51UbckoAaJ3N6v2QdEdMqdURq7vDeiSgc14spb65Iq3DKgN1kFPO7SDqancyQbHpJS+IV9snpFH38wme/Lw+H7YJkDPffUGpxb+lOjruIWsTfx31uxJ9oomQ2h0hzP0idCvq0L1D1iZ+4Yd2Z4nramjpigaEUUrOapmVDkgS+5tfLHz2JeULNNIjVzPUkW8Z+1tePLVBrUuOnGzj4u/+/uoduNmWfNUqEa1rJAzOS2tde5bX3FhX4Pgck/zDP7rX//TZm19+USJG0dRaM3yv3K2gvOxx1e8tETnZxa/+2aH03cJl/yL/nTaXSngT0FfvGWFW5XaKVORkG7/61CLmB/8ZY50ucWhR5r6Z39L3c9E7qlO+1JyTxMiJSIUdRflPYNfx66BeCZO9Qa49h7m3lNmfhxt7qvvkZOruQ2w/GZdNwFGB/MgkvsgvL7SPJtXUIr6JnAWv4FvpcpJ82YQpjmbe2JuQ32JYyp4pD7DpvIBSO2hC61LAo8QipiIQJ8Ryb1F2omh+cPRthzHnwvSr+OychNh9iCjxcIbHu3VO5AsGNb/DxoP5AuBXN9FKaF18jpihhvPHmjqzoyUhd0DMbynMF1UNFtJRYrQ64mJFXV1L+ZWDLKHPkgCBB1TBu5WIEsfYCDrJelVtFSkh4bkC1WRsVxMlNiXTINrRUZjPfGJZZwQcW3J58HhbUZRYaoqtf2UiDfxjCbGWlNdbOPT7S6NuNMGTnDXWNXU+dVkg0QlbGxkt4gWMfevQS38xX5LDdoOmO2JoUjyr05NbfGqLOovPZ5dgoswtPuqZomRK6XdLza/TkSaR1XkhQYYlhpwmKVsDLtO2GXtHPwffwgkOKpGfPk3knmOztawjNXa1Z8l4onwl8OX4LnWpbx5Q7CM1l3hqTMfZTcuviLVaiol/czeEkWcwQDPzgLEjNYMdK3lZTDvUdaGQYTHwK52TOXTYiyV3v0teeWV7//vhT6wvF/55FNED1nykE2JHs8RzxDzagWJ8UjAtcs2uvnGsiqlLT4idYDTdPwyLEFZvWlEtIIgiYpcNHkonxOqjJOoQ6mCR9FwQ9IFQapaMQ0knxPIA+/45YiZxGki3rwF8oHklqMs9Y3UDmVmdXPb9HZM4ToiNDj7eziXuJXGIf+k3Psy2gSUzz2XmEk9AtnMeYxjqnE2TE2L7N9JFuGDUZ5ZDqOyQkzbWDadDY2eGjRJi1bSE2OKf3KGp2ArAMp7zze/SNRzTHbEhSt7VOUpLiC1OXbc6N7WpMz+XLxya6ogZw6nU9rriC4QNLyXmYsFP5ILeagVyX2qqI6brWHJ7XV+1DiHbXzjLwGaEyPTZEsU6YuxSV1yTOjTWCXCHwger3p/LdNsKi3X0x//fhzhEmpo2dN3C32uFxTq61g1lYPGu8C2lgU0K955qAuxILMYGfSaPrzDO6UvbKZzKUFGAPfzstu++PERNOBPcWYuRRcHhrqoAex/DTtuAL56BZXxNnIINKgywF67D302CPb5eRq3AL5qkWl2Avfg80dmOHSVV3HkXRb5diXSdKCEWp1eILcRJh5N7TJGZYC/j7ITsy5RI1wmjxKvTxMpS12GtE6D21fO37xy+1aIUdUnpOlHZBC2lVmfxwqXdps4n1+z2BZvTi5yNMVLpOmGUWI+CTvsVYotx0iXXPwEWop59Mc88fyYzITYpXSeMEq+KJ+x32IKRk7bJycNTZHnLOVuSILOUYErpP5xQ+i+MEk/jY8RKrv5bje0POwAw9tAzO2eZMaX0n5Gw5SSMEq/SYktPE53XOnGRpmfboZGfdr2J1I0MlFMxkeO4qSN8rwBF3FxJeUkydWMRdJLc+99hg00ed4QyRukHckZpkLz1MrnDjkTQSbpW59EQJ27GA0WgvthskfgCGW9iB2Vn2J7AQ9bLxdurt++uGXvlJdxfNcn/RwvKy1f68ZLFdq+qtkRM140OWVgfggWxYAgHc4rsmlXVlog5qsFudUvUfs8cjxTUOrnk//hTOrbAWglMmGt9d+5QZ3ePT9oMqyHdmGS/aYLWFdq007NezWu7OzbzCdoxj5OpU2cKeA2z7PdMoI4Wu5YegfekO57DyHflhdced6xk6pQ4sLSFKMg5jXzbPeosMs93T3vXqzlbZ/QFe88XafkJmfFXn0rd/hwRBTlnD9KoQ8XqFPZK6+KyVdww9sPzQWOfSYK6OMiJ06krtPelZ9SFME0w7izvZuMIn2TqHijKgwQfNkqIjajbL3NabMthz6aJCCRwSGCDY7ukpnSZ0zjIGVOXVFy3gEb1aqDbBLOfvbl9x6glEmL/NTUhNgFxkDOjwxZZYu1lf+VzIBPbAuP+SmR268RBzizqctHjyJQv9uXdWDwwwO2Efyv/ViXd/54Sh6Ly2iTcJGVJad0uEqnLJ6a31HFAp/Hp0nYssE2rpq62YyS6AjAhnLlLGbGqpY6PpZ1f7joMhNo/dG+XQdUHOhOgrrfGRyGIdCjfJz66q7rD5hef7GaKWHEQ5F1SOvdo1TNsfv2LXk8TKPrqSUDYv5e/k2TjJPv9qjyMuEWYrxi7+g+/9NiUQl1u1Knt+64EBNH/LN860RHLLwPY97EuhIWsiqnjo0Dbd9UU/kvitVFCrKpknOhEgmM3T1aQME7CKLExjEMoidSZZC8B3Noa/fo/R8SQrhDLD69PyyUW2E7QuOO1bTfpOo5ZgkO6QixPCQgLFqecI7bdX6nlk62d4UdBXebe/ySIKDHfJZt9jtgGOYQ8e/+1e7VcPdVe1b9KUe4csQFGelKdkw1y/BU5N/bVm8+e3z7bMB6PQusE5KPEClbStpyE2JgmAp4qZPl0Q/pRThMxss8R2ygrTggL7mCS8AusbPcQVUdOOGKtswij5KkV7XEOcUQ2Xx3UrfyJuITnRtGk4xnqaqFuZdnFK+W8Dwt16/F62D6qp26DntWpyuSkdVvIG+u82CcDe2XhbcuOAbVQd8mJuguAumhilSq90hfUQV1UAZOY8XxhBWuDpe0brg41UOcvrtxv/tthbHkWP+VRGiTlz/caNWldQHy6WVzcC0e93qV0ZqEW6uxLl7lLZzMOQOchZx+r1oksYqxEu3jSqfPprfv1nG0Fm6h4PB6dk6NOZBFPcFx5NyvTCbz+HQWj4vGIlE5O63hmHQ915h9eH1jbZaVMUQrzSKJ1EaSpGwwNHEaJ98smbGI3VEIIQr0u+7QJ6XPEwnzOAZ7ma90ePJ8r3DENdfJapxlFxroEkH5UTCgOaer0MVazo8QpMCs9sLADkLfrRtlR4nQAb2dyLbqNWkziJJiEBfZHrnUryGoddegRuWHNUWcR/5dXL9hF2/dbIZrTOkIZPY11IWQ7rCl9AG+30SB1x2WaNEvdkeFEXWkcQN2v/ydbnlP9HuXUPeq8/HtIAmGoMz5H7HFORYqc4jwopwJN5+UPUXGIUOd0Frv/J+okwN1/4G1woo5DmrqRqoxDTv730ePHj796korHv36SiUdPeiv/Cu788XdkqcOT+DCs/5sBfvPpx4jf8FvPm0b2qZvGGewnSCAKdSpSfJ+wRp69dsIJJ3QL9/f3SrTPbrXbbk8uHpLlA75RL6O9kKe3xyC6z2gfyjM+X3hEQpIoDuUbN7kn58kjGe3ToXNrMdxnt95ttysXD8lyTYH/Ge2FPKM9fwnOaC/kGe1FOyFJbi7kGze5C5E8ktE+A8YMT0bhPrv1brtduXhIluOBoaGM9kKe0R6gZH2+kGe0Fx6RkCQ3F/KNm9y7Pp48ktE+kzoDD8N9duvddrty8ZAsxyo0z2gv5BntoUfH+/zS5RnthUckJMnNhXzjJvfenSePZLTPwYNwn916t92uPHxIlPPvKqu9kGe0R0gdoczPj45AS3t/7hEJSXLzlceUIhfJIxntMzAx4K3DfXbr3Xa7cvGQLIcnM9sLeUZ7pM3ifX7p8oz2wiMSkuTmQr5xk3tvz5NHMtpnQBMeRbjPbrXbblcevihRPlKy2wt5RnuhlhnthTyjvb6+/sTm+vr60+SqltE+EyJ5IsygSNoSmy/XD5OvP6ScfP3+yc1z5KO1yJCyTU444YQTTjjhhJ6CB/7vp/EqyAYMvPuMPlg9uTpYL8LgY1wJGMzQVBVxkdHGaeZgbXGWhNGlcZa4fWUo8KS2rtMtftU0/j93PfAYoavgDY3BmQTDfThBQw08KuFjGNEPHiDgVv1MweCpi78EdeJXeFCHWDU+SurQeKSioa5ouoGmwlMd6hMe4DFw+GPGVQp8TU3hWjcLFYxTx38F1Zxi/tdHSd1soqDJ5AE418OhwiMhImCrACvRD04WH9oEdXhNHQ6pMz5e6qbjCfTHIVcs4AbxBWOuboNQ6wYhWUJ4om4Ho3uNB35gssDDsY743qqtsU6QxQdCRYOx7kRdEnSYK+PgRLQCvFoINjRDHyJttS68e6LtR05dFjQ13nQVAo+38xKwVAD3hBN6iP8H46VH9+sCx+gAAAAldEVYdGRhdGU6Y3JlYXRlADIwMTQtMDYtMjZUMjA6MjM6NTErMDg6MDBFv9WvAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDE0LTA2LTI2VDIwOjIzOjUxKzA4OjAwNOJtEwAAACF0RVh0cHM6SGlSZXNCb3VuZGluZ0JveAAyMjZ4MTcwKzUwKzUwJDx0KwAAABx0RVh0cHM6TGV2ZWwAQWRvYmUtMi4wIEVQU0YtMi4wCv5aBQMAAAAASUVORK5CYII=" alt="spectrum image" />
spectrum image
从绘图的命令行中,我们可以看到使用gnuplot的命令就像直接使用了英文进行表述的。翻译成中文就是:从文件spectrum.txt中取得第一行和第二行的数据,采用散点的方式进行绘制。上面的图中,得到的三点是由加号表示的,那么如果要选用别的类型的点呢。在第一个图中,已经给出了不同类型的点代表的数字。那么只要在命令行后面添加pointtype 6
即可。此时完整的命令为:
plot "spectrum.txt" using 1:2 with points pointtype 6
如果要将右上角的文字替换为“example”,增加title "example"
即可。
plot "spectrum.txt" using 1:2 title "example" with points pointtype 6
要额外的添加横坐标,纵坐标的标示呢。
set xlabel "Wavelength [nm]"
set ylabel "Reflectance Intensity"
plot "spectrum.txt" using 1:2 title "example" with points
那么绘制两条曲线呢,只要在绘图plot的那一行的末尾添加相应的绘制内容即可。
set xlabel "Wavelength [nm]"
set ylabel "Reflectance Intensity"
plot "spectrum.txt" using 1:2 title "example1" with points pointtype 6, "" using 1:($2+3) title "example2" with points pointtype 6
结果如下所示:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAADsCAYAAADkUmraAAAABGdBTUEAALGPC/xhBQAAAAFzUkdCAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAAZiS0dEAP8A/wD/oL2nkwAAAAlwSFlzAAAAZAAAAGQAD5bF3QAATCZJREFUeNrtvXl8XXWd//98t6UtW0taliIieBFwQ4oBBJRNUxRQRtQgizOKSyo6OqMOk7qOM86PSccF/Y6KybjOyCLRUVFAbBRxY2sE3Ngju20ppEB3lvfvj9f75J4k9yZpkrsln9fjcR+5Offc8zmfc895f97r623uTkJCQsJUxoxan0BCQkJCpZEEXUJCwpRHEnQJCQlTHknQJSQkTHkkQZeQkDDlkQRdQkLClEcSdAkJCVMeVRF0ZtZkZp1mtjJezbnPOsxsxdDtCQkJCZOFaml0bUC/ux8KLAfaAcysDSi4+xJgCXBprS9IQkLC1MOsKo3TDfSX2N6HBB/u3m9mTbW+IAkJCVMPVRF07t4HMlORdndabO+J7QWgE1hW6vtmdj1wCJCvV9sEPFWl67Qd8AzwdJXGG4q5wOYajZ3GT+NXc/xZwPZDtq1x970nclCrdq1raG0r3X2/+L8DaAaWZ4KvxHceAC5396VVPdni+B1AT7nzq8L4K8K8rwnS+Gn8Go+/xd3nTOQYVdHozKwTCYru2NQU21uBplpexISEhKmPavnouoDOiKo2UzRRW4BmM1uR7ZiEXkJCwmSjWj66XjNbQtFE7Y/tNTFFExISpheq7qMb10maXQv8n7t/utbnkpCQUF2Y2Vp333Uix0iVEQkJDQoza4lA2Wj7tY5lv6mMJOimKAwrGNYS75uNlKNYDYTwKYyyT1Ps11zis+Zse/59qc/HMnYEAjsrMNECZu0ooFj3qFYwIqGKMKwT6AV2NewSYD2wwLCngVuAm2JXd/yDtT7fqYBIm7oUXfdmM8uS5JvdfVkE3JbFthUoib5gZr3uvtzMWoAOoAdoMbM+lFDfYmbLUOCuJT5vNrPeeF9ybHfvAvnBzax/jNMY62SbgVaU7N+CWQfuyyZ41IoiCbopAsMKwLuBN6GEywOAvdHD8mz0ECxAAaHnxvZ1hl0JnOf4r2o9hwZHGzAgYMzsbnffL8zGLL2qNzSupe7eE+lVeY2oJ4RiK0UB2YEE3MDncfyVhKArNTbKdKgUMiHXhHs3Zs2YNRFBxnpEEnRTAIa1A0dQrB65F9gf2DleDwEb4vMZwEKU6f40sB9wsWF3Ajc43l7r+TQomoBWK5pyffF3OdLg9svt2xZ13tn3hqKcwOgps0+5sSs736h4AqhnIQfJRzdV0AS8GAmuNcCBqGxne2AXYHfg5ahs7uHc914GPAH8IfZfYtjvDLvSsJsNu8hoDB9MHaAf6HL3JZELmiXHd5AjsqCofZ3GtmtdLbn3eQFZbuxKQfMxa0MaZ10LOUgaXcMjggxHI03uHiTY/gK8EHgc2IgEXVZD+DjwGFCIvzsBLwF+H+8fAo4Efoa0vjcY1ut4NbSERkYXcGmYps1Ad650cLmZXRp+uF6gPQIKBeSnK4xxjCzK2sxgITls7IrOVNrb0vDVdde7Ngcpj66hYdhi4Aok3DYiYTYbmAlsBc4BXoUICQ4BrgeOAf6KHrKdgTmx/2ZEkrATEoA/AxYBdwGPOfXtbK4XhDDrcy+/MIRAagqfXXPs3z/KcbNART+iPOsrsc+oYzciJiOPLml0DQrDmoHLgD8hIXcY0sZ2BOYB3wA+BPwIeB1wEfA8YB1wEPALYNd4vwUJvbnInfE4YMgUbgE+X+v5NgrGQvyQF0Tu3ruNx+8d4bOakE40ApJG14AIIfcTpKlth7SvOUhoPQF8CQm3K5AAvNbxrtz3C8APkFC7H9gBRWIXIKE5Bwm9TDN8DGmKfwa+5/jna30NEqYPUmXE9MUy4BFkytyOUkn2Q9ratY53Ov5aFHj4VF7IATje5/hLgBuBm5EGuBH56X4DXIdM2buBzyBt7wkU5PhXw2417GOG/dqwXxn2tlpfkOmIsVRGpFYFQhJ0DYbQxg5CJulhwHOQANoLCa0BR7Tj3aMEET6IAhe/i//vQf67Y4BH47MlyJSdF/vchPx7/4KE6yrgfcb0LjHKUE+VEZVsVWBYm2Ed8RprMKVmSD66xkMbcCUSbu9B/rN1wMmO37MtB3K8H0XsuiKNpBnYBwnANpRwPA9Fa2ciDe9wZM7OQD7BnYDbgINrfWFqiTqtjKhIq4Is5cjxZRH1b6cMO3i9IAm6xsN8VLu4P7rBNgKnbauQGwrHu8lpg4Y9AXwYCbrMF/gSFJn9PUpfuRk4IbY9bdjnkUbYBHRNs5SUuquMGGurgnGgOYRcwfE+w8je1/pHKIck6BoIOfOwG1U/rACYqJArBce/DXzbsE8i4fpcZP7MQEL2UeDvYvfNSBguRRUYNwNvM+ydjv+41tetSqjLyoixtCoYB/oMa3EGjtdUz0IOkqBrGIS5sBWVel2HhM58pFFVDI5/MsyTAnAtsC+qqNgjzmclSkhejczaJ4FDkbbZadhbcw/EVEZWnZBpVZkgy1dGLKOofXWHubotJXeZ6QqlKyMGjV2pVgWOd4VvriXOo9KVGBNGEnSNgwISarNRIOBXwJuR6VPJAu7Ml9cL9IbjuQ35616KAhfr4jUTRXqfAd6JWFM+YVhfmDjvRcL5gjjmVEI9VkZUrFVBoyWQpzy6BoFh5wOnEE5sYDfkD7vF8eU1OqdOlHT8IpSDtwqlutyPGFMcaX0zUW7eOpSTNwv4wlTMx0uVEZOPhsmji3B6Z+TyDMrniTyflZHrk8ghSyC0qC3A14C3Ia0uo2KqqDY3CrrQPbQ1zulZSJDthQIU9wNrkYa3DiUcr0F+vHfX8LwrBnfvGU3QuHtfVuHg7r2jCbkh3+0td/yxjD1dUa08uja0Ch1KjskhVqBCbO9C/oyEIcgcvY6fB5yMfrcNwJJamoCO9zp+KnAs8Engf1GqyRok4G5DWucsFL09CGmi84E9Dftr+HrSAjcK3H1ZKvEaP6rlo8tyioZiwLkaztkk6MqjL6KufUh4LKsXP1ecx+dhQPtcCvwNSmieg4TyLFRq9gzFzu+zUOT2/YbdgATgb4DP1XsUL6GxUK12h30w4GdoA07LfZy/oes+w7pWyMq4Il+plubqaOfZZ9ijwNUoeLIApaJsQAJuHipfuxLdB7MQT94LY3srcKxhG4Azk8BLmAxUPRgRfriVkUzZAfS6e3d89qi7Lyjxnd+jh+Te3OZl28r8kFA95MzRDuBy4I/Ap4CTUJKzIT/eVvTbOkpKnotYU36LorZfmybpKQmoxI3hLqzD3H2XCR23GoIulxneHYLubndfkKvFWxaRqI5gXh36/WkfdW1UhMBrQ/lWPchdsQg4FS1c+yFzdkb8vwD59zbF312Aa5h+lRYJgUbio+sCOkNaNxOlKO7eFdHWjvz2hMGInhBNKEn3iijXagiE/24g/cWwPhSM+iMScuuRoFuIXBfr4nUAEog/Ai4BPm3YBSgLv2Hmn1AfqJrpGppcMzJV+4d81lJqe+7zaavR5Zz7uyB/5uuBTse/Wetzm+C8FgP/gSKzL0R5d3ugIMV8xJyyK6KIugtVZKxBQvJMtHj21ktAJqFymAyNLiUM1zlCm3s+8H3HL4uym38MvrmGRlZlkWPB+B6qqf0dMnEztuN5yJcHCmrcinx5s4EbHX9/reeSUDk0kumaMH6sB04EbjPs9Nh2Z61PajIQEdreHFnBufH3W0joLQb2RPfpGiQAX4Py8S4B/gf4sWG7AVfXczQ6obZIgq7+sTfq93AqIr08CLiv1ic1WRhKDwVg2EbgBagaZBbivZsNvBpVXuyGiAT+Ob67BWgawqiRkDCAxDBcx8hSNBz/IPBF9JA/3GgF1ePAp1Gi8a+AGxCL8mxEG591LGtBNbYvRwGK5Qzue5qQMIAk6OoY4Wifb9h/IxMW1PhmSiO0vDchbbYfBbE2o8jsOtTYZyYSdI8Atxp2MdXpUJ/QgEimax0jun09hhzyS4FV08U0i5y5M3LX4njU7eyXKOH4aUQa8Dwk8DYAH631eSfUJ5JGV99oDTP1EsdPROSW0xIh+C4EXozM2vWoneNq5KN7FuLLu7DW55pQf0iCrs5hWN3TVFcLjn8M+eyORPl3b0TJxjujlJOfAC837MehDSckAMl0rXcY8HPD7kFVAj+o9QnVGo5/IPLv/h1Fo9+I6NuvRnW0M4FXAU8Ythn4JuqY1pMWjOmLpNHVKSLi6o4fggIQ32Fwc5Rpi2jAfSbFNJunEfvyHShg0Qe8AjgeXbc+oC1r05cw/ZAEXf2iBfmcmlCfgV+R0icGIajY3wDcgvrRtqCgxC7o3t4V+fP+FSUYH1Xrc06oDZKgq1NEikVLvO9HPG2pmH0IguX4b1CeoQEPIPqnmUjodaDI7L8BrzfsH2t9zgnVRxJ09Y2HkY/uYpKPaTT0ooVgJqqNnYH47f4FBStOAB4E3mrY62t9sgnVRRJ0dYqo//x++OiuJrEvj4ZexHJyLPBTVPR/F+K4ewq4Cvgqitq+utYnm1BdJEFXx3C8N0edngTdCAhttwnROP0F5dfNRtrdOtRo+33AWcS1NKyQGvNMD6T0kvpFVufalx7GsSFH99SE+OpakVB7BvgwKhf7DXCQYasQ+ef9hl2bmE+mNpKgq190R4PoPvSw1qRJdaMhAjf9AIb1IsLOYxAt+wOI2287pOkdjggDDjNsa6OTmSaURxJ09YteVMx+ezBzjB1mrfHdJsTnth0itOwFPj7wmU9tLSbqgnsiwfhC1IDnRuAQVEL2V1Qn+wzwWcP22OZrndAQSD66OkQ8mB0oirh7jphyDF+296BI421IWzkcPdjbAUuAP6Fm0ydgditm52NT2zQO/90vUZrJsUibm4u0u4dit7XAuw37eTTV7ojfIWEKIAm6+kQbqt1cSuTOjeinM2vG7ALMVgOfQX1UPwocjBzzm4EVqLPWE6g/w8LY9hpgZXx/yj7YjrejkrF1SJubg9JOno3KxGahnhUvQBrvdeh3SJgCKGu6mlk70FWuYc22ItfpqwlYmvVkje1Zxv/S1KsVUPrDZ4HLgE6U/zUS2oAdEX3RHxHDxwz0IM9DdEavQtf+aRSNLCCN5naUr/dyYDFm345tcupPIfM26mQvB96PzNjDkNl6NGqzaEgALkY+0VmGHRjXo2e6UGRNRYzmo1thZn2oJ+u4b/hc/9YlWQNrYD+TL6nJ3Q+NTmDtqHv7tEWwbnQjwTQLRQoPLNvtSlrYxtj/QdREZisqfwIJvH3QA5w1jn4CCbI5iNyygHo07Au8G2l7AFdhdiLup9b6ukwWMr9d7lpn1E/3xXXbGfgh6tPxMHCl410RGEqCrkFR1nR19+XufijqtdpqZo+aWaeNz7zpI6KGoSFmZlj+/ZQ1m7YR/cA8x89GUcLfMDJryfsQQeUs5Hc6AtgBCbSvINP1PmAVMtn6kEN+dhx/N9Re8M1Iw5mBEmx/FN9bhxaqKQfHs+BMD2KH2YQ0vLOB7ZFGfUjs3hsd2BIaECOZrq3IpGxBN0IXeggvBQ7dlkHcpfKHkOyk2Ki6FyiY2Qok6JaWOcQc4EQzW5jb1uU+9UqiIm8uq4zoA1ocH67lSjO+AgUcZiFNZDckpGYhQbUJdcp6PYow/gR4HfBSVCnwvNh3Q1zjOajpzF+Ae1DZ1CoiXWMqwvHu0OyuQPffQuAjwDuA9wA/jd/i1cAFtT7fqY6QEUMX1pkTPm65vq5mUtXdB3dFN7O28ZixOR/d8pzg6wD63X15mLR3u/uCEt+9AXXAyp9L72T5D+sJWa9TJMC2AJ8aVuOqa/WDuJ5PAP+NhNlMJLhWI+G1Fmlxe+P+2kg7KaBOYi9B/rrbUArKS5AWszXGnZ073gokdH8BXMMUu+65a35gzPlY5MPbgAT/Q8DlaIHoCQLQhAog1+g+j++4+8LxHG/guCMIupZMIGX/A33j0aIy7dDdlw7Z3oEEVnf8f7e771fi+9OmgXVoD8sd749Ia/uwrl9m5yMf0pXAa1FN5yNI0/457u/J5dIBdOHDhGUL6ra1Ll4zkQm7HfLp7YLMuN8ibjeQlrcT8BPcl4bAPRr3y2p93SYLhrUhQfc48luehfzGf0Va8mLg4lRJUT1UpIF1BA5akUmZfzgKjD9Q0AI0h4kKgLsvQebwCjNrJrS96l7C+kQIuUJmxpbAa5HW9ib0AB6JBNVV6AEFH94vdfAg3oPZucDJKL9uDyTU+lA09ikkQB9HJjDoHugDzsLsrSi48QRmHwM+zRDtv0HRB5wJ/B75505CWvMTFPPvzohFqKtskCihrjBMowsbuUDRN5ehv1KpH6Npi9NQo+sKIVcA2gZpdFqITkAaXC9KlXgO0jY+x3h/I2nXByNNbh7KI3spysFbhPx/16A0lB2R2XsX8tkeDID7G2t9/SYDhl2DItBPUYxO/wl4IQryPI4E4QuAf0/aXWUxGRpdKUHX4e7LwqwcBPfaNE4eKuiiYcyUXElDU2hDD1g/Q7UG/S7dqPphNyTkvo/73098cCtQDDxcgXLLno0isVuR0NsZWENRGO6DhN6OSDNUJL3BA0WGHQtkOYX3I1fBU8h/OQ/5Ky9H2t8jwEdjcWqjmEGwfKrep9VEpQRdi7v3hJY1CHmfXVUneqD9ibexmg/zZ/Tw3YJupm6iH0Ds2vBJnTlB1z9MU9Bv8g6kbZyFfGjvplILkMb7FKrSaEFBi3Xx6VMx/nZIED6IhO59qDJjM+4n1vp6Tmj6WHu8PR6V0m2O+TtaALZDmt39Med7gTsjkjtcG08YFyrio8sJsz6Kq3s7NaLxNqyDw9iTF7A7MpG2oELsLciEWwec6vg9UZ/Y16hMvCHksvSbgmGdTgRwpG2dHLvuCvwBuJZKlinJj9cbYzyGzNadkT/wCfR7PIl8eM9FWt9zUVDjEcxuB45o1Cit48tDYC1CJuu8mPsB6Nl5Emneu6KuZEsdP3IU/2pCDVAyYThCvCvQj9gZmzutysXf8eCfyjzm8jAPoRV0Z+QryRzDTcBlQY+9nMauT2wjcgxDM+3N9SdtRb6iXXDfH/hn9IBV9jdx78d9Oe4fQLlkP0S+we2QZv175L+6EEVkV8V5/hClZ3yi1hd1QtNXx7EPoAj1jkhrfQBpcJtijpegipJnDPsa6jhWoNK/TcKYUa4yohnojuBAIXxzPQzPb6k02oB7WMsGdmBHZCI8ibSLmchxvgcyYz+O0i2uq/ZFnET0A4WcRpr3me2BepiuxewqpNX+FgnA6kBCbxnuZ6AUjBXIfH0WIgd4Ci1A9yIrYE/g7ZjdiNmvMLsPs7sxu7bRCARi4bkQ5XPegwTcj5Dga0Pa7UuQlfGm2O95hp0fTMZtiQ2ldign6PqAlijs741IbEtsryakWS5gB3Zhd/SwbxevRaiAfRUSfruhJNeG9QuFT64tHoqO2JZd863o+h8Yf5+HzMTapHTIHM3O7RYk7P6MKgsWo3trFhJ+B6Ecv63Ar5GP6//V5LwnMmVx1b0X+SNno1aL9yMN9mnkwwNZGk8jIfhGpAHvB7TmKbeS4KseSgq60OSWI0GzDAm55TUoueoC9ucPrEaawyxkMmxEN9eLUXDiVKRF3ApsbNQbKM67D+XF/XHAkV3Ufs5CEb7jkfbw+3Gnk0wGVCFzDvo9rkA1tl9AAm0TyvW7HS1EWfDiWCQAXhl8eA1VPxqm7FLHC6ikbnuk2f4q5rodqkjZgFwL84AfA6dTZD5uCoHXFn7lRna3NARGqozISrYGEEm+1T1BrIkjWMkh3MAF3EuRceMwdGPNR9rdQiTs5gPd4VdpKAypihjIp9OH1oHcB71kwaF6o7SSQG5HQu0ViP1jH4r+VEf+vP3jbwEFNfpQ4vOvgMsbJXgRC9MKpMk9giKxi5BAn4F8d3+D0nF2Q5rgRkQWcGOWIZD/3Ws9p3pERdJL4sAtQJu71wVlUrmEYcO+j1bNFyEhl1UGHA18LNgpGgIRdMgomjK0l0gWLlCqpKueYHYp0myOQUJuE9Jy9kbRyy3I5bAQCYSn4/MtKNjUB3wB9x/UeiqjThU7H2moGV3WfhRzDfdA9+MuyMTdEwYW68MoBivE/dhA92s1UZH0kkDe/1K3cMSTFpnslyKz9nB0ozUj7achEK0NW7NVPSiBBp9/45BgLkVBkltQGVUfisgehnx59yOhthAJgh3jtSsSkLOBT2D2alRaVs/34r8hQbUD0lovjjnfjBKoic92A76B/JeHUAxo3BiftRu2NGl1lcFIputK9KANXPh6qYwY9rlU/5chJo7vAF8Grmo089UYVIjPlEg2tUGVAgBHUdR6/oqE20xk1t6KctQ2IvPvmnj/kUYxZ2FAO29D2tvfIQH4RlTNsjfS6DKGmJ2AtyITvjmVkw1HxUzXOHj9VEaMLugKwHfRzQNykJ/eqIJiWImb8hfbiZKwRnroc3Mo4N4XwYcW4JVIk9kD+fS2RybsH+P/zfH5GuB6QPl8DYQQeK1I0J2O/MfrkNZ6AXAcqiTZjAI4z0da7lrk3+tOGl6FBV09YSxF/ZlDF91YxwO7O/6qWp/7Ns2zqNH1DazsEnKfo1hfehxwVEMKu4GJWjPwTpQK9HNEA78FCb0ZKCF3dyQAViO/3rNj+w1AXyMJvViIL6DYs+NhFIlehITeTOSz3AX4GTLx7wF2cfyMWp9/rTEZgq4slbqZtZnZ3Wa2It7Xewi8C6U4vAeZQ8837Oe1PqmxIlIM+kML7c3lW7Uis+Y3uJ+DhPmXa32+E4J7b8zlPOBG3PcBzkdBiz5k2jlKHXoBEg4zgb2QtnM4Zhc1SueyiJzfhKorHkA+uhORSb8/MmcXAHs5/gkkBPcF9jfsWsNWRBpKqrQYJ8qVgBWA1owEMxiFW8fZL6IqiJtpFXLu3gWcAjzLsH+v9bmNEa1Ai2HZyp9hI6pxPQqzjyCtZ12tT3ZSoPtqcfjxMmH3eyTMHkXsyD9EJh0oleMfkObzXKTx/Qiz19d6KmNAH/pdHwW+hfyTfUiD/zNKAF9o2J8RPdafYp5/j4RjFwpYtCSBt+0oF3UtMDxi2UuReLFesQDd/B9FZt5fkOO7rhGmzU4Uc+g6kYADJUU/QjElYS6KZk4NiKlYpW6ZOW52J0qyfTbKQ1uL/HbHoCjtUcAXKaakvAmzM4Gl9WrSRyexf0NaaS9KIzoS+K/cbjORdjcLeBuKRJ+AiFZfFP/3IoF3P0oa7yX58kZFucqIHsQI3AY0xd/mWgUjtgFfRCH9DyM2iX4yxt36RlbMf16YrPOAOyiSKLwa+azWIb/OVGDyLcK9b4iA+j/0gK9HLC27o8BExoe3GQUzDkRCf0Ncv3p3rzwAfJ4ioe2NqDzucuSD/SZyU9yFfHdrgA+hdJwXI3P2eFTT/XGUytIDdIxt+OmLGSN89iWkavfE3y/Vs+kK6uiEolsvBe5AEa1GyKXrAo5w/Jx4fy9wCcXWkE24n4W44S6ou4qIyUcHCjosRg/8KiTkLd4/hXxbZ6G8yX2RdlPXJl0EmLIGRbch2qsnEBPNdoikYXb83YxSbHZGZvoTKIDzBuDrSDgeFcfra9Syx2phxJ4RDDZT22iA5tKO90SybQsy//bK+MFqfW4jnHOfYZnJ2g/0Ot4fGt1s4HuYbUaRuPfU+nwrf0G8H/VWLUJ+uC+gpNvbUUDGKZZUfZZigm7dwvGlucDTkbm2lhkDzwwkxH+JFuy1wN1Iq+1Afrv5qJfF36JndSMS9HV7j9caddEzYtST3MaeEXEjnYjMvNtQikJvaHyNA7HHdA9UBph1MqST2rSC2W+QpnMTKvO7HpEE7IkW7d8Cn6f+XSyDp6V8uxbkkiigQNpBwAdQWeN2yBeZ9bDIGHt2ietxG9LyRL5Rx4v6uK5PJdJL3L3P3XvcfVn8zV4TEnJm1hGpKiuj61e2va3U9gmigFIVfoD8N1l0q9HQFEm2mVky3R3Or0UBp2OQKfcqRPu0BfliDwUuwOy9tT7RbYHjvY4vD2aUHqShzQX+A/Wt2IiE3HxgJSopux+ZtguBc2IRbwQ/ZU1QLuo6qewlYQ4X3H1JsBSvBPYLwdYa25uRaj4h8yN8FY8jtf8/kf/mPMSM0Wi4DrMrgVswu6TWJ1NzuPdj9kbgXOS/exhp7rOQk/94ojMXZocCtzVSYvHANKOiJ+7lZhR8KKD8u/tRFD4jS1gJXGLYF5HAf3VQuDd8/5TJRElBF+VfhUmkZcr47XD3/hwleyvQHeP1T8Z44e86BTn1349Ki9ag/KxGw5mI1fblyD/11lqfUM0hM/6cKCV7I6qNfRSlX8xAyeKPotzDAzE7BZWVZeVzDWPWhQnaBwOVPzsj4s/5SMi9B3g90vDORdrdFxz/tGGdhq1FgY45wDuncwpKVdhLsrSU8P9lzV8ytCFfYMHM+soQB+wIvMvMTshtWzaCOX0JWgENOXJXARdV/nJOIvQgd8e1uRz5Zk5AAjxB91QPZjNQqslpiGJfTbXll12Mqip+DHwF1Qs3ZP2z48tykdU2VAp4EDLjd0LC7KvAuw1bjKLRfxPzvhO4wrCP17uWl7Ps8pg1nmMNOm612EtypvDynODrQI2ru+L/R919QYnvbnMD64hg3opy0OYC76hnJ21EitWrgwG/XOuA6WXWipJq6/pGrQlsgABzHnrgH0ABirUoenkycDVZm8gG0urKThn7CPA+ZMreCbwOaXnrKVK5P4kIPk8PjXB+pDA1FCpa64pWvkyjyF7jPdFWoMndlwxJOs7C6kx2h7FoE3gyMpnfgLLJ6zLXKG7CJqSttRnWHA/j9phdHNHX5iTkykDX6gPId/UnVF2wEZlyL0cawbEoSvk9qtzNrkK4AbljrkLJxD9FwYlFqMJiZ6ThvsIwmfHTGKXy6EaiMxlvo8oWVGmxItsQ/rhu4NKctjdpZkWE7LsplktlzCZ15ZzO6hazpsdhonQEw8dcdCOfgPLEEspjEcpD2wvVzW6HUi+ehe7zrahD3BbEBnP2+IapG/QiwfYNFG0+HOUVbkWa3Oq4JrPRc/A4cIthVyAtcGfg+w2XcjVOlEovsXKv8Q7i7kvd/dDQ6JZkQQd3zwIQPcBSn1wGXbVqxPvDCZtvHVg3yDuII5CSaRvN0Vrwm8gBXb22ho0I3TvNKHn4JLQob0IP/eMoAn8zqiZYXevTnfB0dd98B/ge6nP8NLq/VyABd3/saijP7ggk8A9Gi8F9wEdyfYOnNCbs5JsMVKKGNorjsyYzOwA7O16vq3h2nr1E0idZPlSRsLLW59gI6KKYR3Y+KqU7CJmtH0b+uw3A2ZjtjIIWUI+NhsYAx78JfNOwfVED7VOQ+f5DlF+4G/JXrkYR2n2QFvhbZN7fg3jyDq/1XCqNKUO8WfJ7DJBW3okc1X31SlUd51oYaJBiA6VB3Sha2ItPDzNj0mDWidJNDkQP+VrkDtgBRfI3oIf9GeCV9cp8MubpFolbf4sE+3ORObseaXybUJ7h21Daya0o33QdcFa9BusSw/Bo31Mp2O0Um1q/DDjb8XtqPacxTjyr2W2o/K+6gnydz0cF8X3IbHsREm6rUGrGQvSwn9To1zkCbq3IRH0vWiT/Lua7DgVkdqVIV3818lvOAN5bj7l2iWF4dBRQQuUlkW3+B9RPov4hjS7r21GX0eKGgNiML0S+qlejBPI5yG2zOyIyzWjcL8asgFlHozXWHpiutLJe4Pux6SvIl7cFCfXvoOd+NXoe9kHm/WMM5sabUpgyDMNl0IVu7nsNewtKOag7FdawQlBlK+CgRaUHWI5yF1MgYuI4FfnssvaL61FEdi7wO9Rx7KB4Pwd4cSw2jYhe1FGsP6yXFkRb9j9I07seVY8sRj69R1Hvjpm1PvFKoZxGNxLDcMMgVrdrKPbdrDv/XCQKtxFpLxGUOAPdnOcN+Ooab5GpL8j/9n7k89wPJRQ7MuGeQgGLp4AHkVA8Hdgbs/ZI1m4YhPnZH4tnByLy/DlKUzofaXfrUUR6d5SH92XgRMPWGXZLqR4VhjXXay7qaJhqDMOl8FXkmzsH1Y3OqfUJDUFLmNVNjnfPW88c5DvqiwYySg1ocN9RXUBm7Dtw3w33eajP6nq0qBh68J+NFvX5iB3lQSALbDQMgg1lWbxORT0pvoIE+AuQgPsZisxmFFDbx3x3Q4vtNYaYYKLSqBlozTVuahiMVBlxGoMZhuuedLMM+oHrHT/E8SOBW+ttVYo+rn0Ai/7KLohKfAfMzkemxh21PscpCZXXXYiiseuQabsWkVguQFrQSRHtbmitOiqFHgC+5fhewI9QysmjFGmhrke+y9UUfZhLDbseuMvxLseXI22xoa7FSIKuGejN1bc21MSGzKPHsKZQxXupL59XF/C/hv2bYR137M9tSMO4DPg3tNo2lDbRYOhERf93omqKXdE1V/9YUWS1oCL6uotIbgscH0rd1IqE39aY6/3IxbMAaXdXIs12N+AAwzJijIziv2EwUjAiy+MCaXWdk12PWg1EiUtesLVSX766diTUZgB7xIp5OdI0PkeeYThh8uEDbTJ70W9wH8qxexX6bT6FhOGdwPenSJ1sxnnXF3OdjTS6VlRVsRfKuzsKlVDehpKKt49eyWcN5Hs2CEYKRvR4PGBBh9RDY7L0ghz9n0BUTX+ol1yhCET0hEnwMeDa//iofQ5YhPuRwLU07jVvHLhn0e1XoFaZD6H7/UAUhX0GkXr+HriSyWPCru20peEdj3zY3wTeHvO+kWKLycMRbf1eSPD1AZ/K/HRhKdUtYUaGcoKuF6WTtJpZS7CPtDZoMCLDDsDHgB3ryJnaBANJngD9ez7EAbh3RelXVr+ZUA0oMrsI9QO+DhXLL0K5ZjNQKkY/8JapotmBorSOfxpVVHwfKQa9wHPQPfo0xQqLI4lm3IYdB1yBhOApdfRcDUO5qGs/ojRvRup7Mw3QYWkEZH1T+7MSsHrodh5mdQtQiBy6lrd9kz/qwwFztS60z2mEblQ58VKkxc1FgYpbUI/VoxDz87cwu3qKCbyst8p6VAe8Dvga4vRbhzTaneLvW5AP7y4kCN8NnBBWSt2hbFF/mK0NycZadk51WMsX7e9as/dgLbk61wIT4AFMGAfUl+JslFz7GvSAb0QL0m2oXGwn9HDfAFyC2Xm4XwMQgq8F1SbX3f026vSL9+PzUWR2Pko5mYOE/FwUwJiLUnIOQQrT74HDgJMMy1Km6gYjMQxPWnOcCZ+k2bWvhBt+5v4PUTWQUS51xY1ZQB2zSjpIwzRsJyjbyWl2dQk9LIlos9bQM/AV5NvdFSUZr0MVBDuidJQ1KP/uPqQNtsbfFpQLWb/32UhT1zPzcRSoeHXM+Unkt9uEUlGWIF67+5FPb058/iTw2rwv3LB2smbs8kuPmaCiYkX90aymzd1rnztn1voaOP8dYK0Kef8R+AwSdB9EJsVcspaGI/Q9NewfgbWOf7vW0xphvnk/R38jdrGaMtCC047qYKWlKdViVyTodkP34RbgI8BbcD8x9/0OJtB+oNYI905Wjvg08CWK/H6/Ad6FNL55se0ulJryTFyrDXF99gDudPy8OG4H6j87JrdMJYv6J7U5zgTxkQIscF28rSiB9iLkHzgGMcXeHytnN2XIB4LJZBGwJTok1V+USEGf3iDcXAY0TSUfUMPBvT9+i7OB76LgxD6Iy20+erAfQ+lArwTmBinAsbU+9UmZvoIUy6Pv7M2opeQuqFzu40h7exxpeI8C+6P64TmI6POEMGHXAXvnnrleqhxkK+mjc/deM+s0lb1MSnOccUGa5YZN8OQmrQ67I3/JPOQgfRkyJz6J2UtRRUE5wZDRlBdQTlQWoKgnFICuAbLNYn1xQ+UsTUm4fwCzuejeW4MW3D3R4ns0KrFaj36rm2Pf63K/ZcMjzM3uKAe7Epm0rcC3UNtJi/mvQqkqqwz7FGJF+W4waLcAf+94VReDkXx0Q6Mni4DLvZrkhDLj9ng7vGEJPHKGIkHPQ9rdMxSLsndEvHO7Ap/B/fPDDlVsQHMvUsNPd/yQqs2l1PQkdDMNtP87Z3HVaRdxOgrvy2wawRRPqDLkCz4XWRJ7ULR69kNKwybkqC8gN8tapPXNR7lp/TQom/GwS4FdiZrCX4FqhveP+R2MzNsZaBHYHvgFimTviNqP/gAFLpYGE3gL0FvOlK10F7Bm5JfIXv/IBMrAzKwjuO1W2pCESzNrivaKQ9ED3LYJnmqSoH1+XMQ1FP1yoOhXE2oks6jMKSxEuXQXxL5X1wFffhvyVSwDet98IYejXKYvk2M0SagTuItowf1FiKV3IXrA1yAT7hFk1q5CwYkt6IFegLS+ItW7WWvw3nU0aA3tLeFzexy5kuYg5eNRJNzXIcVkI0rE/k/EnHIHItq4DDgntMMm1KWvvVInW64ErJmodaWY4tDv41yJgv2kEFHbJcClQ3Zpp5QQVdSxfyM8+ZhWx1+gFWQHpM09Ny7c92MuLcCxmL2lxGncSDTyRYmQz0V+hJoiVrSC4z1H/5q3I2aJ/6NOm/kkBNx/jFwfN6CH+nqksWQsKPvGe0em23YoJ+0ZzE4ha36U7w/SgMgRfX4PVfKsQc/XGuBNyJy/H2nBIB9eO3r2zkWLRW/G4FO5E3Uf9kICoyPeXxp/OxBVE9v6iuM15/5/NPe+NY69YoTvXwuc69Dk0OLuOBzncJNDn8Mmh4dj27UOF7v6yA4+jnMrzrE4zTiX4ppjrV44ndn7Uy5n8dnf4OqBz6HginzX7PzSawwv3W93OdzjcK/DFofNDg849Dg8EvfnvXGPrnK4LO7lQhyj3cf5bNXw3m3G6ci9mmJ7AecmnNtxVuKsxrkR5y8463C24jyCsxmnD+f3OBfgtJR7HoG1Ez3fcgnDvaiIvwcGGlCrd8H4hGl2nAIqkF6W+7/N3Zfke76WwEzgeZZFaixsevdDIsp6NkrmfCXi0foXSpt+P0H1i7sCS0PA1hJdhn0DYK9D2PzLV3ANZw+KsqaIa/3jcyiR9mUoAnsn0srXoebZ91Ls03Af0tbbgP8GHsRsE3Lq99NAQSdXUX9vie19wCGGZTmrdyDaq03xyq7RAuRXPxJpwx8CbjGzJv6Ok/kgJwPwV/7K+PtJD2CkYETelGxDgmXcXahyCcjLc4LvUvQD9xOJlqUiu2b2O3Tj3JDb3OVZNMvsoriAM+JYf4sc+YPy5cIH0ON4b+QItXuNMrhj/KzFoZKYjYxGqhep98to8M5U0wJZgncxLas1/h6DFt7noBy0rfH/Tih48RTya52LEnN7p0KgYuCyYN9Fnca2QwrGYaiG+CCKbM79KGCxwfEzzKzA/3Ehn+ZmruUxPsaBfJMT/H7fcULnMlLU1XOZ+RGF7fNxhMozjdCHRBDDF5hpLR3AMi9RDTBqFzBpdR9FzT4WIn/cnKERy0y45TZ1eY3KwiIKPDC+YR2OLwtttYCic0nINSpsoPXgkSgV6gj0gGeNtb+LIpEPofv2V8AXgW+gh7+n0X//CDQ8gzRcR8oKSMObh4T9ehTQ+CUKMM4DdnD8xPBd99mBttFv9x0mci7DTNcIHLQCBTPLC4EC42cZbkHU7APmqbsv8dzqZWb9Pt6SJ7F9vAAlbvYh4TmMXDPC18tyGd8thnV77WibskBEJuyaXNUQDVk2lJCDrJ/uiKi2oTyzGSj9BBRQW4hcLoci83UV0u4AzsTsIhq7l+8yZNpfFnM8ErmhHorPvxZ/T0Zm/SlIMC407M/A58MEnjCGaXRhshaQcMoP0u81UqvH1Nc1+lqgpOLdUW7TP5UwX5tQ1Pd3qIzlLU71S91yOXRdQPMBd3LS7QewlXyScGPf5Al5yHUzB5mtRyGf3V0o72wrKoqfh/tLg0J/MRKEf0IC8L8aMfF4SK7o8sgy6HSRBxRQFsRsJPg3I3/mGpRvtxfwG2Zzmm/1hRM5j2HpJe7eF5pVT/zfGISb0oL2RCvn48jp+xnMjhuy50Uok/sKtJLcXIt8utDiugjN8/YDWI2ueV+kHdQl3U3ChJD1TV2DHuzdUU7Zw+jefW74m1+DFuM5yKwFaGu0bmSg+9yLTXoyy6kvRxpwBxL6TyNz/mkk+J6PGnA/xpMTb1E61ajUd0YBiy/i/h7UhfwfBuali7sZmey/R6r1EmqXr9YPdHuR7r0fOJwhpXcJUwJdyCx9HooyXoNyQ/+I8u72Rk7516JOZJ9A1Rf7IMH3a+CDmHUOJBmbNTdoLXQXCs7sHHP9I0o0fhd6PtcjX+blwEk8nx0nWpteLr1kGJV6pJo0U9/8aLehSNcHMbsgtt2T+7yfYkh7D5TUuakWAYkcbQ2vutoO/hn8EFiCe3sIuj1qdRETKgD3PszuQRpcPzLnZgP/BPw9cB4SeC9CfqosFWP3+P87FKO2j6EOZRcArZj100AsN2G+fj3m9lP0zL465vc4ei43IoH3FE3MAi5BtO7jwtSiUlcf1AfR6jc//m7JX2B0k20ETkQr5e3VNl3DT9iUqfQH38x9Z17MemBF+HI2oAhcwtSCNPciYUPGYPxttOh9G5VN3YaEwCLgdfH3KeRTvgZ1LZuNFI9uGpDlJqyYvePfPyPrcTUS8H+PnuO1wE3czkbgyWAgGhemIpX6m4EvoCjOTgxJGnYGVr5PIlX5VkQLXU0UkJ+iybCm8z/A8vmPcQK62fuArVMpnyohIAHXExp7M/CvwE2oreUDiPFjZ/SQ3xivrG52HYpeArwQ9bVYTtHl0VCCDgZ1IrvK8ZeheuAtyD+9I7ASeJhdmBVzHLdCMlIeXRsScn1o1cBrlPYwpqjr4C80IVNgMTJd7yXHGpFr4vE48g+cDxxazTQTwy4l+liQ5RAaLSi9pL4154TJgw2KSs5HQqwfaTv9qOIiazL9HBSg2Ih8WdegyGxGaAGwvJHz73KJ9AXkYurnZSziet4PPO3jZAYv6aOLYESru+9nZivcvSuYR3rGkzBcA2RJwecAp1OkuM60pPnIHzIHeD3yeXwVeGMVz3EpusGbyNhWnZROMt0wtDeLFulO4K/IH34vyl/NWHw3o/t1LdJ8ZuI+L77bTP31Ld62yyFlY2m4kxYBr2U9b2MCQg5G7us61HTK8rvqG/qxMzX3rYju+jMMVu07gRMo5uy8HYX7t304mZ+thjVvS2ex+EF7w0/XCItHQjUgVuPTEF3XwSj15L+Rq+VxZKk8QzFY9ShmF2N2bFgsZzViGsqwyyBW48sdP4c/s2EiQg5GNl1XIE0oS2pt9Ro2x2HbTNcrkU8jE3AfA27C/QMDu2A3oUjnw4ga+rfAZaMJnQhzvw+ZxVnJShMqcXkY+RvaRzlGxvE30OnLSeZqQhnYgDm3EQUwdkX323UUKy32RffSjxCdWQvuy6YCw3GliTdPIzr2xN/aN8rZNvQDnwU+jQgRfzjk8zeiUH5LfP7WMR73XES2uB6VtRyAokWrUPHyMWPobdkamlxXOGRTcnBCecjnthw56m9CkdmbcG9Fvry/RdUWj6J+tKDk4yuBCzG7CbMrGy0yO5kYJuiCCbgD+bmyCzO0GL7e8V6k5r8NCbQZuP8iv0NobutRXt1q4P2MQoBo2CkoMrQG9bO8Ko7xLFSyshmZFSeP5SRzSZDT9gZMGCPEbpw16jkZ2A2zO5CAuxNFa/dDCcn/g5hCDgc6cT8EBeUaluBzoigVjGh8E0rJmV0oyXATalZSqvXcaqT57YtumLINOyLBdxEyVV8HrEDa3FaU0/QaFPKfCxw3yhn2RU5Qt2HtJ/6EDZw4qM1hQ0fOEioM3d/nICtlJVJYHkQpGQuR22YBagX6fsx+iQIY+9b61GuFQYIuK/Fy956hNE0NiH7gFwPCzawFs9YhhfLzgfmOnxNRnoMMa/XSzXWb0I1yL1opT0Mmr6F8va2x30rgccOag5xwGBxfHuO1A91XnEgb7h+M88zSDRom0z2hJngcJdq+H1UXrEEBigXIl/d0/D8H1c3uCtyK2WIyos9pxJJTykfXGYGIzkgpGXjV+mS3EQWgD7Msa7xUL8nvAPsadj4qremkRGQ5oqkHo5XySyi3aR3S5B6IY38cCbl+4MWotKckIo+vFeA593MQWV1r0XFc/9HthNpC90k/KoS/DZmsM5HQ2w34OlrIn418ynciH94PkTB8NWZXTxe/3SCNzt37zexQih3AGlejc++NMHsTuiHaGZJf5PgvDDsXrXw/jc+/U+aITcgvBxKKX0G9Ys8ECEr0Q1ClxSKg07C2oWFxw1rJRVlt7zBZMyGnRO3Gve4J1YP7mZi9HvggqqLYHQUn1qF7sR+xg9yOWHs6kfVRQGkqpyO+uLNrPZVKoxRNU0aA2RcXJuvQ1YhaxnIUeb2C8kXyd6DqiOcjJ+/cEvt8CPnfZqHM9QWIK+u+3D5PIFP2KnTjHFvmmjU73pMLRPS/7EZ+gmh4OpBJkRKHE8YG9x/gfgyKvD6I7r33oXt6I7pP56LsA9A9fC4KWBwKHIHZP9Z6GpXGSDRNre6+HwyUfrVa4/WfbEa5RmehcpmPl9hnC2KB6EK+i8MN23fgWuj9qY6fgbTc+SggsZrBGuJGRKS4BK2Ub6E01VKPYe2uruVNQOH6Q/0XEVFbloRcwrig4NXb0b3XjBrzZObtG5BFMgs9879B9/AWpP29ORbZKYupVxkxGKod1Qr2APCCiFbl0YX8GSuADyNe/8sNazfsGuBnwG6G/QIFIs4C1pWpaPgRMluPRc7h0w07rsR1PM6wa5HZkIIOCZMDVVUsQ/f093B/M+6HI+7FHZCguxT58BYgv3MmA44o0w95SqAce0kP6vHQBjTF3+YGjML2Aaeg7uo9KGN8n0FzlbCah9JQ3o7yj55AJvuTSBg9gBy6v0P0SZ8tMdZy1KBnN+BmZBr8CVHO5NEOvNfxI5FWKEwTp3BC1dCfC8StRfdkL4q+bkAL+EPI/bIetQh9R61PulKYNcJnp6E0h0atjMia5pwdavl8RFZYiurl8Xi9CXUoeilaBA5CCcK3oIjWU8Bmxy8bNpTIBM9CrKhZXtPBwIvU9Mb7I6WkDzXFaQKWz1vPJ9jZxJlnBur+1GgLSkI9QUGtfPvFF6BgxWLEwH0xWtxfgxbzzcBHgO2Dyn018O2pRBVWqgvYQI9Kd1+ea5YzodyuXF/XJmBp1min3PZJxDdQxvhc9GOW0sZuR761F6HI1RMoD2lHiomYf0X+vsfKDRR+t1tQnt3CONYmROf+SXTT/RNFpub+s/6X5wDnUuxR20GKuiZMFO5Lo3VmM0qHagd+gNw5ZwD3o2Dj6xC5xVy0mB+A6mhfidmjwBtw749jZdx3DbcYlzJdV8SEOkwEgZdSjLyOC2H6FoIUYEkcs+z2SYUCKXsj/9qpwNFDzcSoN/06Ek5bGVz7umd8/0toRbx/lBE/ghy8+6FmKJ9EhdjEdZ1N0UH8qS+/hztjBW40/2dCvcO9B/euCFRkrRD6kbB7EN3nW9HC/gR6RlZTTITfC/h5+O5acF8aPsCGY0cp1e5wRcZSYmaPuvuCCQ+i1aA/p8U96u4Lym0v8f1tYy8Z/OU2pEllmmIBaC6VFR65cDujG2IDyjmaiyjZHwZw/JxRh8SuQ/l0z0VC8iEU8j8HcY8N5Pa5xXm5F3uADi9VS0iYXGQlkWZXI7fNkUjJeTm61/dHvr3tkEXzE+DB6GkiEooqaXWTwV4ya5TPJ8WMzIIYYQZ3EkSD5baXwI7Au8zshNy2ZWM0c3sQT39PXLXmcvNy/GzDvoeE0LPQDXA1Eo4/hTETY34d8d19yPFewy5AYf+XUCRHyOiv1Wzb7CNIIL9zMq55QsIo6M75rp+NghKvQtHYPZHf7nbky7sPWTsPhHb3YiqULWB6Poemuowmp0Y/7iga3YrJ4qDL+eKW56O35bYP+e74NTodIM/Ewlg1JsMK4yXFDL67q9CNdBMyX+9GUdk+4PSXX8uXf30UCwY6OOladDU6f1hCA0FunP9EQbedkTtrLrJC5iLtroDM2oXIR30PcFG1cj4rpdE15+pa8+8Zr9CLLmJNQ79fbnsF0IU0qTnADpi1jEXtniDz71WoTOwEZBYcFv9nPr6+k3/MkYgvLKtx7UH+k2lTbJ1QY8h/9y6AMEkLKEo7A1khz0bZBgciCrIHURpWB2qB+ok40g6oL0tdBinKMgxP6iDFrkcDlQLuvqTc9hLfn6hG1wb0DoTLzTpxX1rROavE67PoBngI+Ti+BPxv7LKDG8uAjoFzkUaXKJoSaofs2dCzeSq6d+cgi+hqZKEsRMGKHVEmwsOxfW7w5U3yKVXeRzcp8DJCxSssbHJojpy6THNSMmUFBUqkmhwIfAtx3X0LRbNeh3wePRG2z3wlDGxLSKgdsvvxaBRQuwsJslcgnsWsFjz7ux4FLBYia+kbwBfrLQevKoKuDtCDWVsIOwUAKixQQqO7FaWTHIb8GjtQXAFVoSFVvy7V/YRpiOx+NOsFjkBBubeiLARHZuzjKB1lH0QPdQfw/yGTFgZ33BP03LUh66272gv6jIkfogGQOU2LFPHVqC/Nem2+Hf24c1AJ2kwUwq+rFS8hYRD0zNyOghA3IeH2DAqkbUDpUhm79gHITTMTOAZYitn5UYLWgtm+KKuiG933VScQmB6CTsi0JqVzVBjBLpylsjyMKi0eQQwpWybavi0hoeJQsvEy3E/C/aVIUO2NFu0fogV8C4rW3hDbd0IEn1npZBOqTvpLHLMX6I00r6phOgk6lbDJL9gbAYqKwvGlyGH7APJ1nAL81vGja30xEhK2GWoX+h4k3L5IlkSs+u4DUKuBzaiudjdUZdELfBl4Ti5tqkBpCrOKYbr46DK0YPZKJOALVCeN40ykQTYDnxnWv1UrWwvyW6T8uYT6hvsPMNsOkdFmvYx3QrRkq5Dv7hWofnYXRKTxefTs/Q7JnEfiaFWrAJpOgu45ALifE6VWX6t05BXEakI5gSqfYZY/14ZZwxVLJ0xDqFyxOdd4qhPxMD6MAhgPIiEIMms/CHwbkVyswf0DmLUFDfwRFEsiuysVrZ1OpmsfsAdmPwQuRDlBtS9OVs1tRpiYGlknNBaUsrUUkXtuQpkGO6CUk5+i9JOtyKT9AbA7ZuejJPrPApfnyAIq5k6aToLu60iVvhU4CV3oF9T6pICMPywRbyY0FrLSSml038D9ZOSvewKZpb1I6N2D6mjPQ8G4oxEX3m7AVzC7IO7/illX08d0lTABqcnnIcFX1chPCfSH+dpLKv1KaCSI+aSArKJlAy4g909gthn4DDJfV6J0qhkoiLEDegYd9a54Dmo0/4n4XNCxM97GCWP6CDrh9kEF/VUOcZfBHihg8e/1lk2ekDAiFDxbXmL7eZhdAFyGOO1+hIIVZyDh9mRsfwjxNmZ5dWcBeRKOHqBj3iTIqekm6LpDzc5ICGsnWIr1txlzSSdQrZK4hITKQuWNT6HSx+ehoMM9KAr7ntjraETrvkPs04rZVahyKQt09C5SK8cJYTr56JSsKMdpP/CVGrcWbMa9J8cs3J9YhhOmGP4JsXIvRkrF9qgyaSMSbjsi5pRWVEG0LxJ8J2H27Qh0TIrfbrppdBlagDdi9hiKeNai5WDvMLqolEeXMJXg3ovZH1G6yR7x9zjUWe9fcb8Hs/+H2ij8GVVWGOK8W4xSwK5fpajthDD9BJ3Z51C09ZbYsqga+XTDIIKBDsTJpxyihISpBvflw54vs9XAY+HHOwbl120G3ot8frNQJZEDqx4XkcCEMP0EHRxCsX9lxqgwadGdbULqDZEwHTBciehGWt39iLJs99j+xfj7K5T+dSlw7A4iC5gQppePTj6waxDzwjOoFOXomlQjmDWHRtcx0GwkIWE6QNkFa1Be62xUNXEXisJuQqbsM8C7gb0Ww86h/Y0b00vQyQe2J6qKaEfdvf67RmeTkQyoIiIFIhKmFzqQT+5d8fclKKfuaUQK8Biih3pklfLrjplIOtj0EnTCMkQkeAjwFmBD5O1UD9Lgsq5kTcgvUXE2lYSEuoEP1IC3Ia67ZuCNSKu7HREF3As89KS0u4eYQMnm9PPRKb9nLcrGfjNaOY6lOmScGXqB9hwhaBuJZThhuiHjpisiq156ByrVXAzcvKdo2++cyFBV0+jMrMPMVpjZSsupoLF9ZXxWrXrPfrSC/Dz+X4DZe6t1LWI168OsM0rACom1JCGBjMr9a8AfUdT10EeUXjKTCZRIVqsLWBvQ4u6nhTBb6e77mUy4ttjeGvssLfH9iXUBG37Ac5DZ2o9WijuBd+F+SMUvRkJCwthh1rQr3LPWff5EDlMtjW6gJs6lzWSa24CvymXGVSf66H4Bysz+KvBfyAn60zE7O80KmB0Xfy/A7GrMbgqe/NGDCuLS7xjQ6BJzSUJCabj3P6La2AmhWu0OewBMQqCTwcyi+WqAakYeu5GP7s3x/+YxFdUrcPF6VMZyDAqHP4pU6zcAx2H2ylESkNWgR/7Cpvg/5dQlJFQIVfXRISG33H1QY5i8NlNOOOwIvCv8eNlrYswj7ueh2rpdUFb2dqP2kZBQOg5YEd99CDlKd0Ikg33An4B/GGX0phByWS1f0ugSEgAzax7ynK+gUdhLwv/W5O5LhnzUh4IC3aHtlXPIbwD+d9J8dEVcgxyc56JGHsdTnva8GXhnnO++SDhuiE9nI+1uBmoSsuMo42YNtDPCzdS0OiEBcFlVg+SEKUtiQqhWekkL0BzSOZvQEnfvCqndgQRItc23otkoDeva0LJKFde3olSUvwIHokYgOwDzECvDLsAfEMPqEaPUzy4H2iOUnv2fkJBQIVTLR7d0hM+WRPR1uVe7sF5a3EHAWzE7GDgHCbTBgkda1x5I8/otal/4GmAtytqei7i2HkEZ3uvIKh/KQykmtaWKSkiYFqiLygh376mBkAM4H2Vhvwjl6vwHytIeeoL9iPFkMfIzXgz8T+y7LL7/Q6Tl/RyZtYtKRmC1rQMFQzIq9YSEhAqiLgRdzSABthcKJvQDv0DCbDDkn9sKHIoE3GlIG/w57t8MU9dR44/jUYu3W5BZPBRtZCa6otGJcDMhocKY3oJO2Ij7GUBXEHCWEjxfRQwL3YgUYD9gPoODJ4aE4D8jJoYPoTKWoVCUtegHTMGIhIQKY/rVug5HL2ZvQX66g5A2dnCUhJ0OnI2iqL1IsP0BeBPwkRLBhlWxz4OoldvZmH1ryH5dwJcw60PXv7/qpJ8JCdMMSdCJ6fdaVB3xfRRUOA74LsqTyxgWfoZM237g4RLCqQf4KPC7+P/HSEB+DgnLDG2IbBAU4EgR14SECiMJOmEdcBvKq1uCcuLmoJSRg1C38dXAC4ENJWti1ejmQBS5vRzl2i1G6SeCorf5DkfNKMqb+rkmJFQQyUcnrEJR1VbUbPepeC1AJuifECHgE8BVZY/i/iVUGnY8yrm7EXgg+kJA5o8ze30uUThVRSQkVBhJ0AkXoqjqa4B9kAb3NZQI7MDJwHXADSjoMBL+PY71JlS7u5ZiH8smRPp5DHAeCnAkbS4hocJIgg5kdrofA6xEhJwbUWLw7cisvQMlBS+m2FW83LEuQy6BdwCfJxN20uBacX8hcC3yBd6eAhEJCZVHEnSD8SkUiJgJfB3YlSK7yn3A58YomG4CPo1qaD8cxzkHeHEkCL8SpaqsrvWEExKmA1IwIg8l8D43WEy2A/ZGgu4G3G/ehiN9GgUkTgdOBK6PY81EfrnlwEUUe8smJCRUEEnQlcJgGqnxfL8Ps+tQcKMXCc1jgbOAF6OKiRuBX9Z6qgkJ0wHJdK0crkApJh9HwYzbgW8AR6EAxGwGNwZJSEioEJJGVym4d2N2JkozeQLVwe6McvNeCVyXAhEJCdVBEnSVgqKsi4AzgN8g8/U6pMn9ttanl5AwnZBM18qhGfgS8GuUSnIXsD/yzaVuYwkJVUQSdJWCIrhHIy1uPqKCugI4AXg2KVE4IaFqSIKusuhGfHeG3ARHIZqnvytD156QkFABJB9dJaFCf1CayTNIszs1CbmEhOqiUTS6eajAviYwsxYbLwuwysuWIv66M8cj5Gy0NoyVn38aP41fS8yd6AGqKujMrNWG9Egwsw4zWxmvcr1a51NDQYe6mE2M7nxiqSStE/juZCCNn8avJbab6AGq2cC6EzWWyW/L+r0eivootI/n2AkJCQkjoWo+OndfamZDtZo8H1tqEJOQkFARmLtXb7AwWz0Ydk1JtSuQwCsAS11pGUO/twrZ6etzm9egnqrVwN6owuHxiR5onHgBpRvtpPHT+FNt/DnA7kO27e7usydy0FpHXduBbndfHkLvbkr74t4BnDJk24PAphqff0JCwuRie5SSlceEa8JrLegg+N7cvb+EaUt8djmiPUpISEjYZtRa0HUBKyLa2kzqiJWQkFABVNVHV/YkzFqAPk+JtAkJCRVAXQi6hISEhEqiUSojEhISEsaNuhN0Zua514rYllVPrIjoLCNtr8D4w7ZVcPy2ON5ApUiV519q/KrMP46XH8urOf8Rxq/m7z+sUqjUOJUYe4Txx/xMTtL4K+JVmLT5u3vdvFAu3Yoh21qAS+N9K9A50vYKjD9sWwXHb87Gyt5Xef6lxq/a/EucS0c1519m/Gr+/sPmV2qcSs29zPhjfiYnYfx2oKMS8683ja4A9IW0bg9J3QL0ALh7d/zPCNsne/xS2yo1fivQHcEZ3H1Jledfavxqzj+PDhSFr+b8S41fzfmXqhQqNU6l5l5q/G15JieKptxxe0aY6zaPX2+CLkNPTDqrjc1HY/OlYuW2T/b45bZVYvw29MO15wgQqjn/UuNXc/4ZW0a3F4kQqvr7lxi/WvPvBQphHrZTJGctNU4l5l5u/FLzr8T4fUBbsAV1UBS6E55/rfPoBiGkeFYC1mNmj6KLnbfB8zdfue2TNr67n1binCoyfqDLo91itedfavwo16vm/EHCdskYxqn4+GXuyUqNX6pSqNzvX4m5Dxvf3Rewbc/kuOHuXSb+xhYkdEea6zaNX1caXajGLfE+L80zp2iB4kUvt31Sxy9zThUZP46ZOWCrPv9S41d5/oQDvHeINlet+Q8bv9rzJ1cphB7gUuNUauxh42/jMzkZ174vFtf+Eea67ePXOgBRwgF8N/KPrADaYvuK3Lbm3P4lt0/m+OXOqULjNw05ZrXnP2z8as4/jtmRH6Oa8y81fpV//8JY7/8KzX3Y+Nv6TE7i+CtHmuu2jl9z4VZmwi2Ip27EbSNtnwLjF6br+GP9Tabq+GO9/pWaey3Hj8V2TGNty/ipMiIhIWHKo658dAkJCQmVQBJ0CQkJUx5J0CUkJEx5JEGXkJAw5ZEEXUJCwpRHEnQJw2BmnfmmxcFa0Rrvm4ZUB4x3jJYhJWbjPU4hO9fRjpljxhhXbWYwu9w90XNOqD6SoEsohV6Kmeet8X8mHJqJTPQQei0jNB4fhNi3MNbPzKx5qFDKjZkvPm8d7Xv5uXmu01yZMZpzFEUD712lcYkFuwFRV7WuCXWDHpQVD8VeHpmm1AL0hlBaAXSjQvBeV43kpcByd+8NTasQ37+UEKBm1k0IjBBYpT7riPMomFmLuy8bMmZr/J8VoudZTch/r9QEY/9BY8T7bFuLmfXFubSY2TIv0YozoTGQNLqEYXD17mjKKHlcVDiZcBvQ6FAf3mVI8GRaXQ9FDasFFYBnbCDLXNRP7bnhyn3WG9tOyx27DVgWY3blxuvLCaFS3yuHUvv2xPGXU6y7zCiDEhoUSaNLKIdMq8uK63uRAGsOba2AKHUyza8JBhgoVoaQbHL3vnjfmvn5GGz+lfusFCPFgJCNcyh13tvCpNE/zs8SGgxJo0soh0zQZZpS95D/M03sNAbzloGEYkd8ByQ0utx9SWht3bl9R/qMEsfNWFWShpUwZiSNLqEcepB/LdOg+kKDyrqm9yJyzubYr2BmhTB7exC99dLYtwu4NGf65oXZSJ8NRb4PcBa46Gewjy4hYRhSUX/CuBHCqSnMyIxLrH+E/cv277Ux9PaNfTK67z7UX+C0GLvfR+kLnKWelAtQjHHOK0LzTGggJI0uYdzICxZ37x3D/j3j+SyHfkTlnQUHlo517BxazawvUkW2CSEox5RKk1BfSBpdQkLClEcKRiQkJEx5/P+NpUnl2yqhzQAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAxNC0wNi0yNlQyMDoyMjo1NSswODowMF4ymoIAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMTQtMDYtMjZUMjA6MjI6NTUrMDg6MDAvbyI+AAAAIXRFWHRwczpIaVJlc0JvdW5kaW5nQm94ADIyNngxNzArNTArNTAkPHQrAAAAHHRFWHRwczpMZXZlbABBZG9iZS0yLjAgRVBTRi0yLjAK/loFAwAAAABJRU5ErkJggg==" alt="two spectrum" />
two spectrum
曲线图
曲线图的绘制和散点图类似,只要将上述命令行中的with points
更改为with lines
即可。
柱状图
假设有一组如下的数据:
# file: data.txt
# Year Red Green Blue
1990 33 45 18
1991 35 42 19
1992 34 44 14
1993 47 15 30
1994 41 14 32
1995 42 20 35
那么如何对该数据进行绘制呢。比较好的展示方式就是分组的bar图。通过上面两个例子,很容易想到具体的绘制命令的更改应该将with lines改成相应的with histograms。确实如此,但是只是采用这样的方式,得到的结果的美观性还有所欠缺。命令以及结果如下:
plot "data.txt" using 2 title "Red" with histograms, "" using 3 title "Green" with histograms, "" using 4 title "Blue" with histograms
绘制的结果为:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAADsCAMAAADTjJroAAAABGdBTUEAALGPC/xhBQAAAAFzUkdCAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAATtQTFRF////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/wAA/wAA/wAA/wAAAP8AAP8AAP8AAP8AAAAAAAD/AAD/AAD/AAD/AAAAAAAA0y0AbZQAhHwAeoUARbwAyjYAo14AWacAAKNeAEW8AFmnAG2UAHeKAJBvAFulAE61AIR8AKlaAMo2ACjZADbLAFmnAL5EAH6HAHKPAAD/VTEASCkAXhkAThUAQ1sAO1AAAAAAAAAAGAAAEwAAEwAACBwAABMAAA4AAAQOAAAKAAATFg4AABMAAAUAAAoAAA8OAAAOAAAFHQAAAA4AAA0YEg4AAAgcAAAYDgAAERMADBcAAAsTAAAAAAAA////3yh5/wAAAGd0Uk5TALuIzBEiRKpVmXdm3XH7+fTs7/Hw4+7kM3XHM0RVIkQzESIwEUQzItXtYHVpglxQXIJcXIJ1P05pMGkwUFBATkAgW1Wy06zQvtqR/vLx9Pnx8PHv8fn07e/08O308/X69vLw+vr0+H15Od8AAAABYktHRACIBR1IAAAACXBIWXMAAABkAAAAZAAPlsXdAAAO1UlEQVR42u1dC3vbthUFKYmSLG2q0sxR1jSiPVnelmzV0qXd0rRNs67LHt3cJVu6ZI/umf//D0YQgB4wcHFBggRI8X6taX8+wuMYuLjEwUUI6ayzzjrrrLPOOuuslfbmzZuIkLgX9X23pGk2iOjXZEhGY99NaZol4/ikT+IJIVPfTWmaJeMkHpI4yWZu/vO3vj2bzd6aG+zG2yYEtbdvuEMZm+QSdTPjYPYdDH2nJB7Rr9TGt1CExxgU/YO4QkWogeASNTMBThLSPyWTmAyG+c8ddcKM1C2mcZQ5uiiOFvnPHXXCjNRlNPR3Xzvqdoag7tBuf9f2E221ue0H2kTdaRRFvb1IHzfahB01dZSqceYOkkH2TT/pM+reuaO3d/c+ffTURYt+RBdCuhwy6u4An9j/3VFTl03Y0zE5yd+UxiP+ztlRhzFKVW8Q9zKXR6KB8HUddQjLJ2xCR92kG3V2li8TJ8zXDba+7i6wTHTUSSZWWLtPddQVtuZTx2fSOzafSRYOKm4BdQcPjE168Xg6KF3xEVI3mGZObUK30BZ95ubyL2TBtxmWyyVJ2f9n58vl+Rn7P6W/ODtu6k74rk7SG36PLq5shU168dC83bPc+/4IqaObWDQITviLBHubyH7iIXEKfPbIqWOjbkr3FPMXCfY2QXcYo2v0yJbufX+E1OW+LnlDycpfJNjbBI46S1/X7xEhZJM2UEcm0/FwnI+z/p6v21InlgT1WmFFXXwqhOyWUCeW1O13SaFIxUzdKI6EkE2tFdQ5MSN12XiLhJBNraNOmJG64TiesniHSdi3b2br0cRYriKErMgKU5ecRlFvdF27W12syHqdPy7W5JI+LrMHoY8VgywyDqKbpgoWSdJLuJCdU4cbdZyzJQrsiTo6m6IddRiPd7H3PSY4ibZCNkFTtzx4VGmlqIvjJGZrK1tnTbba+x4d14ndLDvq0krYOrBSE3Y6EtSdbM9yXSA/X1VInFZCk8pKjToyFdSxdwpql8Bn1nvfV/w24WTCnl8PR/esFHX905y6BRt1bMKusuWALxPXHnVQ59DXGcoot8JOkngwjYdYX7dvDaJOU1b5uG7ANups3yka4OtEUZVRV9Aq9nWpDbhYWa2jrgG+rqw1iLpjmbAOXyOOjTpuqcOmHgt1KdhdK0vhX7eOOpSvO+eb1ymmqBpW2LtWJwkqpu4MAzIQXJ+vuyM9YauKOs7ZOQZkmJICdSzUnYPdPQThitKN4NZRh/J1dhNWQ3RbqTvHgGrwdXcVpzK1RYXh684wIAN1LnwdjhTn1OXq/zaBvZm+zhN1VP3fJbBX4etSFKqMr/NDXa7+7xLYm+nrvFDH1P9dAvvtW3GMSLPknJ1hQMhpHRB1g4yD+IYJxdT/XQL77e8nCWIrGiVh484GCFRAE7afcZD8wIRi6v8ugd2fr2vgMsHygUQCu0sJu+W+Tpil+p/agJZlUOFTJ6wKCRvn81Kwv+2hzsrX4UIYuL9HSl3LfZ2wztcJC0LWwb3LaspqHXVWExa3DQ/390ip63ydqr9lSMGhWkcdtxSFwvm6Y6EuBbt7CDL4uhT8bfuoq8DXpWB/W0ddKBJ2k6gLTMJuEnWdrHPdmilhN5C6o5Z1ZOskbGGdr7NGCTNS1x/3egv73P9Ows6vthgN7XP/O19HyKBPqbPO/W+3hJ0b6sxJsp/7j0tghyVsfmLrh6gm+pOw1xcsI/EaEJfAnlmfnTaxSmCHfR1v2z3+Y4opyt8ysVajjaNuPKJZ/9a5/7CELVEXqq+D87GN1C164tZeq9z/FPwtb9t9mBSpqPqp48NtpUabfV3/8Pp6JxK21N3AJWzN4PPzDitNWM0C8C5bTH4E11QhdfwWgMKjTrIqqHOBCtDXyVajr7NCBbjCylaFr8NFbCkKZUUKDlUzdVYT9gyFgvvb/AkrUjt+zH5stq+rd5kQtd7DoEKnjltNwYlUe4rqLs7XHcuou4/prlg7z1AouMYW+Dr+5LPMpa9LQVR7JizvL27t9OHr6J1XF0ZUbjUFJ6LW99gD9mIcZBhPAuWSuosSKGFVUbfBdHdDMGUJlMv9ukslNxqU5kK7Bvm6CnaJL1EoP74O7q4/X3dZAiUsCF+3dIAq5OsuUaiaqdtgurshmLIEqgJt4qIIShhWwsYmsBfydSkK5U3CLrpMMAkbncDeEF9XS3DCJGx0Ars0YeFJtkGRgkMFGZxQCXsvgR3OwpaWCdwCQFCogIITXBY2ySXsvQR2OPe/Ql+HWyYu+Q3CMCklgxNc7j+TsNEJ7BJ1OFJc+rqLg4eOlFqCEyZhoxPYpU0nGFWhrFNoKrp+m7CTsKXaS0nYocg6Ib/D4kIYuEYXUzGMt4kKXv9xI9gq7Ahy58S3r9M0qwk7J1a+zqWEvYZATlBVU2c1YV1K2AEFJ3VQV8E7bBDBSSnqYFQV1K0gUDFUzcuENwmbD5G1EiSjViiUxlonYa+UvdaMJxwq5JDYm4QdZHDiTcJWH51uUnDiTcLm3TVMxbWSmzCo22C6uyGYsgTKStYxjDo1N0FN2Pol7OYHJ95kneYHJ94k7BWKOqvgpOaTThtMdzcEU5ZAVSBh4zxiyL4uRaFwvi6k4CSObBLYvfu6CoKTomeJJ0MqJqIT2EORsEMITpIFVWDRCezeJewKgpPiJ9gH0QSfwO5dwq4lOEEmsMcR1/pRWdjeJeyAghN2wAmdwN4sWaeQR0RTN87/eW10Art3CTuk4ISbpfrvTcIOKDiRrSGyTgjBSUHqvPm6oIKTQtR5k7Cbv3PiTcIOKDipgzpvqcTVBieyhS5hBxicWFLnTcJufnDiTcImyu42KTjxJmGXOZuuQfkJieuXsJsfnHiTsJsfnGww3d0QTFkC5U3WaX5ch1uHW3OCvX5fV8EJ9pqXCd9Z2A0OTjaY7m4IpiyBQqbXgc1qUHBSv4TdmhPs3rKwXZ5gL7zCMvXfNvd/wx6hZmFboYpSx9R/69x/bxJ2QMEJU/+tc//9ZWEre10qOCl+NJGq/3u5/1bqP44Ub1udmrH5kyVJl8uzc97664PPRv3fy/0PXNZxEZyIGh+wR9HghLk469x/bxK2y+DkfbCrSPXfOvffm4RNUKQcMqhpvPiTln2bKKb+pyhSQrshVqox5Czsn5IVvf9xDaOstjpLBSeixodgJ4KQsD9AoVIUymVw8uEBuC7qikjYaxgF1+gyOJFqDFnW4UGAgbr6ghOpXRoLQsJ+iELVdzGRoV0VUyck7Mz30/up1G2UJOwVAVH175wslaiqqZMkbHUbJQlbc8NyIQlb0ywcSqrRzzKBm4octYJRKViWy+BE1PgzsKsVU/dzFHUPUKj6ZB2pXTWPOknWUbdRkrA1K2wVl+seMqhpvF9f9whso/Ap6nNHGo9ooM7FxUT3QVTV1BXxdQZUfbJOEL5OjBR1GyUvZlgm6gtOpBprnrDcXXwEtlH4lMfqJhbydS5OsEvtqnmZ2LAHPBU5SHNkq5iEbRWcaM4IiBo/Brta8YTFhR0folA4X+cyOPngAFwzdXBwIvkUJ6//cLPsdk5K+7pRTOwT2Dfs8QnYRg4SIYyGOoGq7wS71C6Nmakbn8bEPoH9PbByaQFYo1BW1yaUOsEuavy0JHUkzqizTmCX9uvg4CRVgopJ2GCFdcs6jLptArvVHexPwDaKJsLBCc7XbZYpWS6XToITqV3XlwncHeyMOmpcwsbd/H9fzcYhSpJPVjAKJ3TzskqdYDfKOtib/yl11gns3F08BlHCp3yGQqUo1GMUdfAJdlHWR8qyhCEnrHUCu+Tr4Al7rgTZyTrwtNb4Os2oC0LCfsp/hJeJR0pQMaHbRXAitUtjFW86wWGH8CmPUCicr+N/rFLBidQuv1nYKFlHM+q2gvLFiv4jkb+AUepdmK0XW/KFGKROEs396LBimYB93WfqJkooTSa+OtCBm4VEeb010eVWJw4Fp9fBQlIYOuw9Zds03X1sgzJsEjxBUacOwjWomnPEhIRNoDZKvk4zYSUvtkah4GYJM6zDmhorps5K1vlECdKIPwRGqVdFee18ChUVhqwDhx2G+ElCPVWSIqP4n8EwFdXbXDJKU2M91IndDnUbDacn1SjDOqw+v6LZxFyjUCHLOk9AUqS30xUKBTdL89askXX83DgBBxTCp+D2Vz5GoeCdE4F6X0mKjPKaXifGgLqNdsGJZh8DhSoWnDxR11gPdcLXoWQd3FangTr1XrLGixXyiFVTx92F2N1Xt1H4FHjnREIRFEr3Dsufn0BFmWqsmLoNprscZIjYBAqO/gSK16iZigL1qbJiGcVr9JuFDQcnKUiK3Yaoy+BEU2M91ImMCJi6ByhSNMluEkp9GFIm5YENytWoG9/CUJd8zp5wQPE5V9YeOkD9khygNONJoODgRCpLYzMzWbn6v01gR1L3BXvCwckXifK3GhQPOzRj81fkoEYNdQKl3iGUUbCsY6YuV/93CexI6p6xJyzrPOOkpCApAsXDDo1H/DU5KEsN2qLg4ESgNFlEaOpyRWyXwG5HnTgXqW7js8OpqCHlGWrCiu7CCqtAPYSKMqBsqdsmsP/mt7PZ7K25zn73ZW6//8PV1fyrq6s/zp+/mM9fPFej/vTnl19fXX398i/zV68y4GsJ9VeO+tv8ipb297ygVy/UqH+8pCVdXX3zav46K+mfh6B/MdCX/84xX82/eU3Leq5B/YeBrv6rbv18fjPjYPY/JHXbBPbOLIxSt0tg78zC8jMn2wT2zqxNqP+ddebDRjECtA2hHRSVXyplsP64h0BluB4CtD39C9oE064Dy0Nkk+1C6NJFsUulTHYSkxFmHYsRccIAwRu9YYf+Z2cxor+7ELp0UexSKWN3+yjqRjGit7vTv3AXE+uFE0XdNoQuXRS7VApR1mmCKImgqBOnf8H6evEQ1XxmkyhGUocLoVHUbf9JKYMhpvVwHE9x3TU3nk4s27cETH+RITSmKITPzGw8Eid2IVskSc/8d9id/jV0EYGy7y8yhMYUxS+VMpHSi1HTGjNhd6d/IetHyBqtre4Quu+yQlxZwEH+zjrrrLPOOuvMmf0f8uJBwIaBNMYAAAAldEVYdGRhdGU6Y3JlYXRlADIwMTQtMDYtMjZUMjA6NDU6MDMrMDg6MDB/a3DmAAAAJXRFWHRkYXRlOm1vZGlmeQAyMDE0LTA2LTI2VDIwOjQ1OjAzKzA4OjAwDjbIWgAAACF0RVh0cHM6SGlSZXNCb3VuZGluZ0JveAAyMjZ4MTcwKzUwKzUwJDx0KwAAABx0RVh0cHM6TGV2ZWwAQWRvYmUtMi4wIEVQU0YtMi4wCv5aBQMAAAAASUVORK5CYII=" alt="bar" />
bar
为了增加美观性,需要在绘制之前对格式进行一定的设定。
# bar1
set style fill solid
set palette rgbformulae 7,5,15
plot "data.txt" using 2 title "A" w histograms palette frac 0.1, "" u 3 t "B" w histograms palette frac 0.5, "" u 4 t "C" w histograms palette frac 0.9
# bar3
set style fill solid
set palette rgbformulae 3,11,6
plot "data.txt" using 2 title "a" w histograms palette frac 0.1, "" u 3 t "b" w histograms palette frac 0.5, "" u 4 t "c" w histograms palette frac 0.9
# bar3
set style fill solid
set palette rgbformulae 33,13,10
plot "data.txt" using 2 title "a" w histograms palette frac 0.1, "" u 3 t "b" w histograms palette frac 0.5, "" u 4 t "c" w histograms palette frac 0.9
bar1: aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAADsCAMAAADTjJroAAAABGdBTUEAALGPC/xhBQAAAAFzUkdCAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAiVQTFRF////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUgCXUQCWUQCXUgCXUgCYUQCXtSAAtSAAtCAAtCAAtSAAtSAAtCAAtCAAtCAA+b8A9LsA87sA8roA87sA9LwA9LwA8roA87sA8roAtCAA87sAtCAAtSAA8roA87sAtCAAtSAAtSAAtSAAtSAAtSAAUgCXUQCXtSAAtiAAUQCWUQCXUQCWAAAAAAAAdQxgiBJD8roAnhgiphsXoRodpxwV5ZcA6aMA6KAA6aEA66YAyVEA8roA9LsA87sA9LsA558A2XsA4Y0A3oYA2nwA554Aoxsb34kA66cA2n0A550A3YEA6KAA66kApBsZ3YQA6aIA34oA6qQA3IEAbglr4pAAlRYx24AA6aIAjxQ6mBcs34oA4IwAjBM+6aMA3IMA2XwA6qYA6qQA6aEA66gA6aIA4IoAkhU13oYA4Y8AiRQymxkXhhM2mBkZkBYqnxoU4Y4AAAAAAAAADwAcEgAhEgAhKgcCJwcAJAYAJgcALx0AMSUAMycANSgADgoAHQMWJwcAJQcAMyEANCgAMiYAEgAiJgcANSQAIAQNOisANikABQAIIgUMLiMACAAPJQYHOCkAKB4AAAAAAAAAUQCWtCAA8roAfg9Reg5YawlucAtndQxf////qKxMpwAAAK10Uk5TALuIzBEiRKpVmXdm3XH7+fTs7/Hw4+7kM3XHW82vdTBpdb9EzWnIETMiIHVQRGlcQM2/u7vIxITEn4innz+Plz+nUFwijkTV7d/TM+Pr5+3j5uHq7daIj6c/4+ft5ePl6Ovl4efk6Ofq6ujn6+bY5+vo4+jt6uXn4eHl5+rm6eTo6ubp+Pj4+Pn565H++fv8/fv5+vv5+vvw/fz6+/r6+/v8/fz78P358/389/h2Fos0AAAAAWJLR0QAiAUdSAAAAAlwSFlzAAAAZAAAAGQAD5bF3QAADQlJREFUeNrtnYuf1FYVx5PMbGZmd3UKxWWxtHaZXaAuu3TZLoJUELC+RW1rq62PtiJqre9Hq/VVrdr6qC64oCL4qG8FLdD/zyQ3d2Y2JCe/e+cm9yZzzwdY+HAmO/Ml53dP7i8nOI4NGzZs2LBhw4aNWsaVK1dcx/EablP3O6laTLjhr37LaXd0v5Wqhd/xJpuON+U407rfStXC7/hey/H8oHKjP7/mtd1u95YtObH11ryMMG7dqi4r9y2pzNoWMOi+DsE343jt8NcwOtsh4B6SFf6DqMpyoRNBZVY3L2HSd5ozzpTnTLSiP1t0PHLRzU57biB0rufORn+26HjkogswNAe/WnSDANBtjh2vF31FXWOL6Atqi867MiH2AouOx3Rnkv3mtp3ZcfvQCyy6OGZbEw32uzuuZsfOoVdYdHF02k6DVaxFJxgzrttgbYFFJxbh5sYEu0q36MQiqFfHaURd/xvuyI47h15i0UmHRScd1UcXl9JtpX/j6qNLEXCJ8MMVti30EouOhe+yn0HM/Tc7dg29xKJjEWLzWF/XI9DND73EomMRFuw0K9gFi04oomJlLTFVsLuHXmLRsQjRNZn7olDrmuGOAjOya4wuXGGnot/u6fX2Or1ez9nLfu65q9e7aw/7uVcMnTfDjewao5OIfHRtz+VGdhgWHY9cdMH55nIjO4y6omv6s4KvyEXX6njTrN9hIrpjm+u6U7nHTZHVgkINuqmG58Y31bxxcd/S8vLSvuDL4vLS/vDL/uDLUvjlbpYyGzBwt+Udc9b3G35sZEfosLMupQ8yGd3EdDPeeHKcpf9lx8rQa5DmxO0b2bVFNznkG1PoDgiii4Jb2GLodkPJ+tF5Q+gWCXSrMuh4iKG7pyLoorNult1msJ9At1YeOhUFu/fg/PzBXfPzbyoQXaR1LSZJd68cWl1bWz2wcuDmL4erhY5fGL25QHTDKywaFUJ3JP2vlfV1gvdNVEHrFkpBJx4Fo1OxwvKtx3vT/7qu6CqjdRJRIXRjVrAqtG5M0anUujFDp6JgF6zW3RxvOXL02JEjx44ukFlzpa2wbz3O4k4T0NH7dTkqhmUpRMdvDztuArqDZNIJ+nxKZI0ZOrpgT9Iqlsg6atENQqxgj40XOrpgy9O6t8ULwH3VQUcvEycgdCq07u1QlnJ0kfvfH2CvptZpQhe6/4MB9iK07l4oaxSt04Mucv8HA+zV1Dot6Jj7Pxhg37Hd84AxS0jrTkLoTpqHbiJg4G3Ny2Lu/2CAfcc7fB/Yi4YK9gSkdSfMK9hmwMB/Z14Wc/8HA+z6tK6Cy0Q0lNwfYFe56VRzreMh5/7TW50LEDoVto5WdDxUFmyPLsVE1iibTrVDl9OxJbJG2eqsLbqaa50cOqt10ujoFbYHFazVupTI6dgSWVbrUqBYrUtBR2udRUegU6l1Y4aOLtgFSOtUWNi1QydWsGO2wppiYVcQnSkWdgXRjbmtUxy68izsCqIba1tnNHRjbmGPgm6sta7ZaYQP2BKd/RfSuppa2JOe026Jz/5brXOciWaITnj2H9K6ylrYGLrwnhN/ePZfaIA9o2CPs+etvgvSOn0W9tpKNJF4+KZEbIA9iCa720ThAPtO9hZfEdK68peJlCHYocg96zrtcOpfdvY/Y9Mpgc5UrUsZvRZBN9sIp/5lZ/8ztjpjdNcgdPpsnZSBfxF0TnPz4+tVFux1aL9On62T8pgJIXSJKELrMhaA29n9v+/WttU56llXAjq6FLEsA7VuNHQjad1VkSwDV9jR0GFaR3ds13VrnYnoeCnSHdsrurWupIK9L57tqJPWlbRMxFCuQlpXEXQlNScJdPTVhJjWjdlZRxfsNUjrro2J1gmhEyvYul9NJNDtIrP0aV30CMTlxfdA6EpqThLoDpJZN6Dz6UYB6NJLsUIF+yqkYjxL5X5deilmoDtkIDqxglW5S5wOxSitowtWn9ZVoGAxraOhFKh12FlntU5a62QLNraw0QF2Ka2jV9gCtQ4rWNllglnY8AC71bpBMAsbHmAXaolfhaBgWUY2J6GFPTTATk9hCxXsDUjrbhRXsLLNCTaF7UQW9tAAOz37X6DWYcsEf/gyhE62YLHZf2ZhwwPsQptORWidELpimxNmYcMD7EJbnUXYOkLoim1OBC1soYK9DpWimK1TQMGafA1LLwBitk4pWmcOOm1aZ/LOieFaZ/LOSfkW9pgVrEoL26DmpAx0hmudnoIt38KuTXNSvoUthC5hTleoYIuwsGvTnJRvYdemOSnfwq5Nc1K+hS2ELuHrG4WufFunAHQmXk0UYWHXpjkp39apTXNSvoVdQHOi504nw7UOO+tM1jqVFrZJzYnnigywV0vrsBVW9l7iqVZoJsID7NotbIOak/A/Jp/BB9i1W9gFFKz8HewT7hQ+wF4tC1u2OQEH2D039vqhKexqWdjFNifsBid4gL1atg521knP/jeCcxMfYK+jhT3q1UQR7r92C7vY5iQZtbJ1TN45MVzrim5ORkFnuIVt8s6J4RZ2dXdOtGtdsc3JaOhqYWHrKVjDLezqNifaLWyTmxPDLWyTmxPDLWyTmxPDLezqNicVsXVMRFcRC1tPwRqudVjB6lkmDLewq9ucaNc6k5sTwy1sk+9gN9zCLrg5Ye6/5Oy/4RY2VrCy6Jj7Lzv7XwsLW7ZgmfsvO/tvuIVd9B3sofs/NPsv5P4bbmFnLBPvnb9n9/z8roOZzYmI+z80+z8Gts774u84YnPCJE529t9wCzvjrDu1GZ2s1jH3X3b233ALO0Pr3r8Z3ahXE3Luv+Fal1GwCXQmT2F/YPXAyqHVtbXE8x9N0ToTfViuYh+M3+NSKpQCtS6jYE+ZcNZhWnc/ia78KWzFWlckugcgdNq0Tk/BYhb2g7rQYWedHnQfOnz4oYc//PBDH0nN4ir2CKR15e2cnDKhYB+Nv/tiahZfO2mtK9DCxlZYPcvER9OhSBVseRa2EQX7MQidtmUCu5rQc9Z9nCxYvhP3CRJdgbZOxjLxmAla93j83fenZnEVewLSuvJsHSOuJlRqXXm2jhFa90nyrONQTputdXoK9lOQ1p3RpXUZBZvQOhObE+51fZpEV/7tOp8xoWA/C2ndk7q0rrrNiXatK3rnpO050gPsnyOXCV6KT0EFW57WqSrYzoznSA+wP54OJbFM0H1dgRZ2xp1OjylC53gBOtkB9kfJs46XIn01Ub6FraxgGbr+ALvQM9g/D2ndGQgdXbBfmFvozc3N9VQUbO4ygT2DnaELI7awhZ78/0WyYPklFn01gdk6X9r8cTF0Gc1J7oUY+uT/EJ3sAPuXIa37CqR19KbTV2XQZRRsQuvkb8MO0ckOsNNbnbwU6V1izNb5msKzTvGFmJyF/XVomXgKQkcXrBQ6k7c6vwFpHY2uQK3LaE4U3a4zGjq6ORGzdZ5MhcKznobQJRQxA50Rtg5fJmito5cJnvUMiQ4r2ESWyfecqNzqfFA9OmyZ0KN134TQYS3xGfXosKsJPTNi3yILVkzrTpPoMK17GjrrTpmADrN1noVW2CdIdNgKm8gy2dahd07E+rpvqy/YjBU2UbB6mhNu6yyT6LCtztO60Jls63yHRJc0f9LRYdewiSzM1tFz1tHNCVcx2tbhWd9Vr3WyOydloOMt8b7ULLHm5Hvj1ZxwrVNh6xSgdVhLrAfd98mzjqsYvcIms9LRFah1JjYn3OuibR2e9SyJ7jkI3XPk+cTRJRwxvTsndHOC2TqPkOhq15z8AEKH3Zr4gHp02M6JqrOus10E3Q+hgqV3TpJZ6eieh9A9T0Lh6H4EaV03H1bk/vcH2MXQ0c0JXwCeIdHxLLo5+TGELpGV0Zz8BFph89FF7v9ggF0MHWbrYFp3P4nuBQjdC9BZ96IidJEjNhhgF0P3U/KsU7nVKYUuQ+teJLNE0fUH2H/28263e8uWrPjFS1H88lfr62fPra//euP8hY2NC+d/k5r1299dDHLOXfz9xqVLQeLlRNYf4qw/nl0Pj/an8EAbly5sSc3688XwSOvrL1/auHzh8sZfNif9lSW99Lco59zZly+Hxzr/981Z/4iz/smS1v/F3v2/b/qU2wIG3f+A6PoD7DYEIkQ3GGC3IRDRPSf9AXYbwsHdfxs2dETbA5L6LbSCQ0UPlcqJZqcBZAV5DSCpf/cvGVPI+9oUUYucF4MWeuRDsYdK5cWk57SRdcwD+oQJgFv4hJ3wh1h4wOcdtNAjH4o9VCr34zYhdG0P+LSDu3/pj+gLL5wQun4LPfKh2EOlgGPN+MCRHAgdv/uX/H4NrwW9fRZTrgeiw1poCF3/v5TKCaCsWx1vGvu4+W8+LCzRqwTk84ItNHIoQDOD6LT5HbtUzPp+I//fYXD3b85HBLLEPy/YQiOHih8qlQel4UFljRTs4O5fKpou+B2Fo+wWuqnyG2LHIm7kt2HDhg0bNmwoi/8Do9Yk12Nqv7oAAAAldEVYdGRhdGU6Y3JlYXRlADIwMTQtMDYtMjZUMjE6NDM6MTkrMDg6MDDHOYb0AAAAJXRFWHRkYXRlOm1vZGlmeQAyMDE0LTA2LTI2VDIxOjQzOjE5KzA4OjAwtmQ+SAAAACF0RVh0cHM6SGlSZXNCb3VuZGluZ0JveAAyMjZ4MTcwKzUwKzUwJDx0KwAAABx0RVh0cHM6TGV2ZWwAQWRvYmUtMi4wIEVQU0YtMi4wCv5aBQMAAAAASUVORK5CYII=" alt="bar1" width="261" height="196" /> bar2: aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAADsCAMAAADTjJroAAAABGdBTUEAALGPC/xhBQAAAAFzUkdCAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAihQTFRF////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGWcAGWYAGWYAGWcAGWgAGWYAgAAQfwAQfwAQfwAQfwAQfwAQfwAQfwAQfwAQ62ms52eo5meo5Wan5mao52ep52ep5Wan5man5WanfwAQ5manfwAQgAAQ5Wan5meofwAQgAAQgAAQgAAQgAAQgAAQGWcAGWYAgAAQgAAQGWYAGWcAGWYAAAAAAAAAPUIGUi4J5WanaBcMcBAObBQNcg4Ozk+F1leQ1FWO1VaO2FmToCBA5Wan5meo5mao52eo01SMuzxpx0h7w0R0vD1q01OLbhMNxUV32VqVvT5r0lOKwEBv1FWM2luWbxENwUJy1laPxkd411eRwEBvOEkFyUp+XiELvz9u1VaQWCcKYR4LxUZ3xkd5VSoJ1leRwEFxvD1q2FmU11eR1VWO2VqV1VaPxUZ4WyQKw0NzyUp9ViIKaBANUiQJZhEMXBwLbA0NyUl8AAAAAAAABRMABRYABRYAHQIEHAAEGgADGwAEKg4ZLhQhMBUjMhYkDQYKEA8CHAADGgADGwADLhEdMRYkLxUiBhcAGwADMBMgFAkCNhcmMxclAQYAFQgCKxMfAwoAGQUDNBYkJREbAAAAAAAAGWYAfwAQ5WanSDcHQzwGNEsEOUYFPkEG////CzyHEwAAAK50Uk5TALuIzBEiRKpVmXdm3XH7+fTs7/Hw4+7kM3XHW82vdTBpdb9EzWnIETMiIHVQRGlcQM2/u7vIxITEn4innz+Plz+nUFwijkTV7d/TM+Pr5+3j5uHq7daIj6c/4+ft5ePl6Ovl4efk6Ofq6ujn6+bY5+vo4+jt6uXn4eHl5+rm6eTo6ubp+Pj4+Pn565H++fv8/fv5+vv5+vvw/fz6+vv6+vv7/P38+/D9+fP9/Pf4lOj5CgAAAAFiS0dEAIgFHUgAAAAJcEhZcwAAAGQAAABkAA+Wxd0AAA0MSURBVHja7Z2Ln9RWFceTzExmZmd1CsVlsbR2mV2gLrt02e4KUkHA+ha1ra22PkpF1Fof9dVq1Vqt2vqoDnVBpYKP+lbQAv37THJzZ2ZDcnLunXtzTzL3fAoLn57JzHyb87sn95eTOo4NGzZs2LBhw4aNSsbly5ddx/Fqbt30JylbNNzwd7/ptNqmP0rZwm97U3XH6zjOtOmPUrbw277XdDw/qNzo7697fbfbvWlLTmy9OS8jjJu3qsvK/Ugqs7YFDLpvwOCbcbxW+HsY7e0o4B4mK/wPoirLRZ0IKrO6eQlTvlOfcTqe02hGf7foeOSim5323EDoXM+djf5u0fHIRRdgqA9/t+iGgUC3OXa8UfQVVY0toi+oLDrvckPsBRYdj+n2FPvDLTuz49aRF1h0ccw2GzX2p9uuZMfOkVdYdHG0W06NVaxFJxgzrltjbYFFJxbh5kaDXaVbdGIR1Kvj1KKu/023ZcftIy+x6KTDopOO8qOLS+mWwt+4/OhSBFwi/HCFbQm9xKJj4bvsVxBz/82OXSMvsehYhNg81tf1AHTzIy+x6FiEBTvNCnbBohOKqFhZSwwV7O6Rl1h0LEJ0dea+KNS6erijwIzsCqMLV9hO9Mc9vd5ep9frOXvZrz139Hp37GG/9oqh82a4kV1hdBKRj67ludzIDsOi45GLLjjfXG5kh1FVdHV/VvAVueiabW+a9TtMRHdsc123k3vcFFnVFGrQdWqeG99U8+bFfUvLy0v7gh+Ly0v7wx/7gx9L4Y87WcpswMDdlnfMWd+v+bGRHaHDnXUpfRBldI3perzx5DhL/8uOlZHXYJoTd2BkVxbd1IhvDKE7IIguCm5hi6HbjUo2j84bQbcIoFuVQcdDDN1dJUEXnXWz7DaD/QC6teLQqSjYvevz8+u75uffohFdpHVNJkl3rhxcXVtbPbBy4MYfh8qFjl8YvVUjutEVFhslQnc4/V8r6+sE75sog9YtFIJOPDSjU7HC8q3Hu9P/dVXRlUbrJKJE6CasYFVo3YSiU6l1E4ZORcEuWK27Md52+MjRw4ePHlkAs3jB6l9h336Mxe0U0MH7dTkqhstSiI7fHnaMArp1MOk4fD4lsiYMHVywJ2AVS2QdseiGIVawRycLHVywxWndO+IF4J7yoIOXieModCq07p2oLOXoIvd/MMBeTq0zhC50/4cD7Dq07m5U1jhaZwZd5P4PB9jLqXVG0DH3fzjAvmO75yHGLFFadwKF7gQ9dI2Agbc1L4u5/8MB9h3v8n3EXjSqYI+jtO44vYKtBwz8d+dlMfd/OMBuTutKuExEQ8mDAXaVm04V1zoecu4/vNW5gEKnwtYxio6HyoLtwaWYyBpn06ly6HI6tkTWOFudlUVXca2TQ2e1ThodvML2UAVrtS4lcjq2RJbVuhQoVutS0MFaZ9EB6FRq3YShgwt2AaV1KizsyqETK9gJW2GpWNglREfFwi4hugm3dfShK87CLiG6ibZ1xkM34Rb2OOgmWuvq7Vr4gC3R2X8hrauohT3lOa2m+Oy/1TrHadRDdMKz/yitK62FjUMX3nPij87+Cw2wZxTsMfa81fegtM6chb22Ek0kHrohETfAHkSd3W2icIB9J/uIrwppXfHLRMoQ7EjknnXtVjj1Lzv7n7HplEBHVetSRq9F0M3Wwql/2dn/jK3OGN1VFDpztk7KwL8IOqe++fH1Kgv2Gmq/zpytk/KYCSF0idChdRkLwK3s/t/3wosJ4bOuAHRwKeKyCGrdeOjG0rorIlkEV9jx0OG0Du7YrpnWOoroeCnCHdurprWuoIK9J57tqJLWFbRMxFCuoLSuJOgKak4S6OCrCTGtm7CzDi7YqyituzohWieETqxgq341kUC3C8wyp3XRIxCXF9+HQldQc5JAtw5mXUedT9c1oEsvxRIV7GsoFeNZKvfr0ksxA91BgujEClblLnE6FFJaBxesOa0rQcHitA6GolHrcGed1TpprZMt2NjCxg6wS2kdvMJq1DpcwcouE8zCRg+wW60bBrOw0QPsQi3xaygouCySzUloYY8MsMNT2EIFex2lddf1Faxsc4KbwnYiC3tkgB2e/deodbhlgj98GYVOtmBxs//MwkYPsAttOunQOiF0epsTZmGjB9iFtjp12DpC6PQ2J4IWtlDBXkOVopito6FgKV/DwguAmK1TiNbRQWdM6yjvnBDXOso7J8Vb2BNWsCotbELNSRHoiGudmYIt3sKuTHNSvIUthC5hTpeoYHVY2JVpToq3sCvTnBRvYVemOSnewhZCl/D1SaEr3tbRgI7i1YQOC7syzUnxtk5lmpPiLWwNzYmZO52Iax3urKOsdSotbErNieeKDLCXS+twK6zsvcSdZmgmogfYjVvYhJqT8H9MPoMfYDduYWsoWPk72BtuBz/AXi4LW7Y5QQ6we27s9aOmsMtlYettTtgNTugB9nLZOrizTnr2vxacm/gB9ipa2ONeTehw/41b2Hqbk2RUytahvHNCXOt0NyfjoCNuYVPeOSFuYZd358S41ultTsZDVwkL20zBErewy9ucGLewKTcnxC1sys0JcQubcnNC3MIub3NSEluHIrqSWNhmCpa41uEK1swyQdzCLm9zYlzrKDcnxC1synewE7ewNTcnzP2XnP0nbmHjClYWHXP/ZWf/K2FhyxYsc/9lZ/+JW9i672AP3f+R2X8h95+4hZ2xTLx//q7d8/O71jObExH3f2T2fwJsnQ/E7zhmc8IkTnb2n7iFnXHWndyMTlbrmPsvO/tP3MLO0LoPbkY37tWEnPtPXOsyCjaBjvIU9odWD6wcXF1bSzz/kYrWUfRhuYp9OP6MS6lQNGpdRsGepHDW4bTuXhBd8VPYirVOJ7r7UOiMaZ2ZgsVZ2PebQoc768yg+8ihQw88+NEHH/hYahZXsYdQWlfczslJCgX7cPzui6lZfO2EtU6jhY1bYc0sEx9PhyJVsMVZ2CQK9hModMaWCdzVhJmz7pNgwfKduE+B6DTaOhnLxCMUtO5U/O77U7O4ij2K0rribB0SVxMqta44W4eE1n0aPOs4lNO0tc5MwX4GpXVnTGldRsEmtI5ic8K9rs+C6Iq/XedzFAr28yite8yU1pW3OTGudbp3TlqeIz3A/gVwmeCl+DiqYIvTOlUF257xHOkB9lPpUBLLBNzXabSwM+50ekQROscL0MkOsD8MnnW8FOGrieItbGUFy9ANBtiFnsH+RZTWnUGhgwv2S3MLvbm5uZ6Kgs1dJnDPYGfowogtbKEn/38ZLFh+iQVfTeBsna9s/rpjNSe5F2LYJ/+H6GQH2J9Aad1XUVoHbzp9TQZdRsEmtE7+NuwQnewAO7zVyUsR3iXG2TpfV3jWkbCwv4FaJh5HoYMLVgod5a3Ob6K0DkanUesymhNFt+uMhw5uTsRsncdSofCsJ1HoEoqYgY6ErcOXCVjr4GWCZz0FosMVbCKL8j0nKrc671ePDrdMmNG6b6HQ4VriM+rR4a4mzMyIfRssWDGtOw2iw2ndk6iz7iQFdKfAZYKvnU+jVthHQXS4FTaRRdnWOZUORaqv+476gs1YYRMFa6Y54bbOMogOt9V52hQ6yrbOd0F0SfMnHR3uGjaRhbN1zJx1cHPCVQy2dXjW99RrnezOSRHonojffV9qllhz8sxkNSdc61TYOhq0DtcSm0H3ffCs4yoGr7DJrHR0GrWOYnPCvS7Y1uFZT4PonkWhexY8nzIcMbM7J3BzgrN1HgLRVa45+QEKHe7WxPvUo8PtnKg669rbRdD9EFWw8M5JMisd3XModM+BUDi6H6G0rpsPK3L/BwPsYujg5oQvAE+B6HgW3Jz8GIUukZXRnPwEtcLmo4vc/+EAuxg6nK2D07p7QXTPo9A9jzrrXlCELnLEhgPsYuh+Cp51Krc6pdBlaN0LYJYousEA+89+3u12b9qSFb94MYpf/qrfP/tSv//rjXPnNzbOn/tNatZvf3fh5X7/5Qu/37h4MUi8lMj6Q5z1x7P98Gh/Cg+0cfH8ltSsP18Ij9Tvv3Jx49L5Sxt/2Zz0V5b04t+inJfOvnIpPNa5v2/O+kec9U+W1P8X+/T/vuFbbgsYdP+DRDcYYLchECG64QC7DYGI7jkZDLDbEA7u/tuwYSJaHiJp0EIrOFT0UKmcqLdriKwgr4ZIGtz9C0YH87k2RdQi58WwhR77UOyhUnkx5TktzDrmIfqEBoJb+ISd8B+x8BDfd9hCj30o9lCp3K9bR6FreYhvO7z7F/6KvvDCiUI3aKHHPhR7qBTiWDM+4kgOCh2/+xd8v5rXRH18Fh3XQ6LDtdAodIP/pVROIMq62famcV83/8OHhSV6lYD5vsgWGnMohGYG0W7xO3ahmPX9Wv5/h+HdvzlfEZEl/n2RLTTmUPFDpfKg1DxUWWMKdnj3LxR1F/mOwlF0C11X+Ya4YwE38tuwYcOGDRs2lMX/AcOwXElvsAdXAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDE0LTA2LTI2VDIxOjQ1OjUwKzA4OjAw2/W9mgAAACV0RVh0ZGF0ZTptb2RpZnkAMjAxNC0wNi0yNlQyMTo0NTo1MCswODowMKqoBSYAAAAhdEVYdHBzOkhpUmVzQm91bmRpbmdCb3gAMjI2eDE3MCs1MCs1MCQ8dCsAAAAcdEVYdHBzOkxldmVsAEFkb2JlLTIuMCBFUFNGLTIuMAr+WgUDAAAAAElFTkSuQmCC" alt="bar2" width="283" height="212" /> bar3: aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAADsCAMAAADTjJroAAAABGdBTUEAALGPC/xhBQAAAAFzUkdCAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAihQTFRF////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATVD+TE/8TE/9TVD+TVD/TE/9gP+1f/+1f/+0f/+0f/+1f/+1f/+0f/+0f/+0/1Ep/1Ao/08o/08o/08o/1Ao/1Ao/08o/08o/08of/+0/08of/+0gP+1/08o/08of/+0gP+1gP+1gP+1gP+1gP+1TVD+TE/9gP+1gP+2TE/8TE/9TE/8AAAAAAAAX47jabLV/08odNjFeObAdd7CeOi+43hJ7Wo+6m1A62w/7mc7qMiJ/08o/1Ao/08o/1Ao6W5By5hi2oNS1ItYzJZg6HBCduHB14lW72Y6zJVg53FD0ZFc6W9B8WQ4d+PA045a7Gs+14ZU7Wo9z5JeW4To3IBPb8fMz5Ne7Gs+bL3QcMzK14dV2IVTarfS7Go90Y9by5di72Y77Wk86m5A8GQ57Gw/2IdUbcLO1IxY24FQZ7fDcNW2ZbHDbtK1a8PActy124NSAAAAAAAADg8vERE3ERE3HjstHDgnGjMkGzcmLR4TMxAINRAIOBEJDgQCFyQ2HDgnGjQlGzUmMxwRNxEJNBAIERI5GzYmNRsQGSswPBYMORIJBAQOGS0wMA8HCAgZGzMtOhYMKg0GAAAAAAAATE/8f/+0/08oZKDbYZjeWn7pXIflX4/i////8T+eYwAAAK50Uk5TALuIzBEiRKpVmXdm3XH7+fTs7/Hw4+7kM3XHW82vdTBpdb9EzWnIETMiIHVQRGlcQM2/u7vIxITEn4innz+Plz+nUFwijkTV7d/TM+Pr5+3j5uHq7daIj6c/4+ft5ePl6Ovl4efk6Ofq6ujn6+bY5+vo4+jt6uXn4eHl5+rm6eTo6ubp+Pj4+Pn565H++fv8/fv5+vv5+vvw/fz6+vv6+vv7/P38+/D9+fP9/Pf4lOj5CgAAAAFiS0dEAIgFHUgAAAAJcEhZcwAAAGQAAABkAA+Wxd0AAA0MSURBVHja7Z2Ln9RWFceTzExmZmd1CsVlsbR2mV2gLrt02e4KUkHA+ha1ra22PkpF1Fof9dVq1Vqt2vqoDnVBpYKP+lbQAv37THJzZ2ZDcnLunXtzTzL3fAoLn57JzHyb87sn95eTOo4NGzZs2LBhw4aNSsbly5ddx/Fqbt30JylbNNzwd7/ptNqmP0rZwm97U3XH6zjOtOmPUrbw277XdDw/qNzo7697fbfbvWlLTmy9OS8jjJu3qsvK/Ugqs7YFDLpvwOCbcbxW+HsY7e0o4B4mK/wPoirLRZ0IKrO6eQlTvlOfcTqe02hGf7foeOSim5323EDoXM+djf5u0fHIRRdgqA9/t+iGgUC3OXa8UfQVVY0toi+oLDrvckPsBRYdj+n2FPvDLTuz49aRF1h0ccw2GzX2p9uuZMfOkVdYdHG0W06NVaxFJxgzrltjbYFFJxbh5kaDXaVbdGIR1Kvj1KKu/023ZcftIy+x6KTDopOO8qOLS+mWwt+4/OhSBFwi/HCFbQm9xKJj4bvsVxBz/82OXSMvsehYhNg81tf1AHTzIy+x6FiEBTvNCnbBohOKqFhZSwwV7O6Rl1h0LEJ0dea+KNS6erijwIzsCqMLV9hO9Mc9vd5ep9frOXvZrz139Hp37GG/9oqh82a4kV1hdBKRj67ludzIDsOi45GLLjjfXG5kh1FVdHV/VvAVueiabW+a9TtMRHdsc123k3vcFFnVFGrQdWqeG99U8+bFfUvLy0v7gh+Ly0v7wx/7gx9L4Y87WcpswMDdlnfMWd+v+bGRHaHDnXUpfRBldI3perzx5DhL/8uOlZHXYJoTd2BkVxbd1IhvDKE7IIguCm5hi6HbjUo2j84bQbcIoFuVQcdDDN1dJUEXnXWz7DaD/QC6teLQqSjYvevz8+u75uffohFdpHVNJkl3rhxcXVtbPbBy4MYfh8qFjl8YvVUjutEVFhslQnc4/V8r6+sE75sog9YtFIJOPDSjU7HC8q3Hu9P/dVXRlUbrJKJE6CasYFVo3YSiU6l1E4ZORcEuWK27Md52+MjRw4ePHlkAs3jB6l9h336Mxe0U0MH7dTkqhstSiI7fHnaMArp1MOk4fD4lsiYMHVywJ2AVS2QdseiGIVawRycLHVywxWndO+IF4J7yoIOXieModCq07p2oLOXoIvd/MMBeTq0zhC50/4cD7Dq07m5U1jhaZwZd5P4PB9jLqXVG0DH3fzjAvmO75yHGLFFadwKF7gQ9dI2Agbc1L4u5/8MB9h3v8n3EXjSqYI+jtO44vYKtBwz8d+dlMfd/OMBuTutKuExEQ8mDAXaVm04V1zoecu4/vNW5gEKnwtYxio6HyoLtwaWYyBpn06ly6HI6tkTWOFudlUVXca2TQ2e1ThodvML2UAVrtS4lcjq2RJbVuhQoVutS0MFaZ9EB6FRq3YShgwt2AaV1KizsyqETK9gJW2GpWNglREfFwi4hugm3dfShK87CLiG6ibZ1xkM34Rb2OOgmWuvq7Vr4gC3R2X8hrauohT3lOa2m+Oy/1TrHadRDdMKz/yitK62FjUMX3nPij87+Cw2wZxTsMfa81fegtM6chb22Ek0kHrohETfAHkSd3W2icIB9J/uIrwppXfHLRMoQ7EjknnXtVjj1Lzv7n7HplEBHVetSRq9F0M3Wwql/2dn/jK3OGN1VFDpztk7KwL8IOqe++fH1Kgv2Gmq/zpytk/KYCSF0idChdRkLwK3s/t/3wosJ4bOuAHRwKeKyCGrdeOjG0rorIlkEV9jx0OG0Du7YrpnWOoroeCnCHdurprWuoIK9J57tqJLWFbRMxFCuoLSuJOgKak4S6OCrCTGtm7CzDi7YqyituzohWieETqxgq341kUC3C8wyp3XRIxCXF9+HQldQc5JAtw5mXUedT9c1oEsvxRIV7GsoFeNZKvfr0ksxA91BgujEClblLnE6FFJaBxesOa0rQcHitA6GolHrcGed1TpprZMt2NjCxg6wS2kdvMJq1DpcwcouE8zCRg+wW60bBrOw0QPsQi3xaygouCySzUloYY8MsMNT2EIFex2lddf1Faxsc4KbwnYiC3tkgB2e/deodbhlgj98GYVOtmBxs//MwkYPsAttOunQOiF0epsTZmGjB9iFtjp12DpC6PQ2J4IWtlDBXkOVopito6FgKV/DwguAmK1TiNbRQWdM6yjvnBDXOso7J8Vb2BNWsCotbELNSRHoiGudmYIt3sKuTHNSvIUthC5hTpeoYHVY2JVpToq3sCvTnBRvYVemOSnewhZCl/D1SaEr3tbRgI7i1YQOC7syzUnxtk5lmpPiLWwNzYmZO52Iax3urKOsdSotbErNieeKDLCXS+twK6zsvcSdZmgmogfYjVvYhJqT8H9MPoMfYDduYWsoWPk72BtuBz/AXi4LW7Y5QQ6we27s9aOmsMtlYettTtgNTugB9nLZOrizTnr2vxacm/gB9ipa2ONeTehw/41b2Hqbk2RUytahvHNCXOt0NyfjoCNuYVPeOSFuYZd358S41ultTsZDVwkL20zBErewy9ucGLewKTcnxC1sys0JcQubcnNC3MIub3NSEluHIrqSWNhmCpa41uEK1swyQdzCLm9zYlzrKDcnxC1synewE7ewNTcnzP2XnP0nbmHjClYWHXP/ZWf/K2FhyxYsc/9lZ/+JW9i672AP3f+R2X8h95+4hZ2xTLx//q7d8/O71jObExH3f2T2fwJsnQ/E7zhmc8IkTnb2n7iFnXHWndyMTlbrmPsvO/tP3MLO0LoPbkY37tWEnPtPXOsyCjaBjvIU9odWD6wcXF1bSzz/kYrWUfRhuYp9OP6MS6lQNGpdRsGepHDW4bTuXhBd8VPYirVOJ7r7UOiMaZ2ZgsVZ2PebQoc768yg+8ihQw88+NEHH/hYahZXsYdQWlfczslJCgX7cPzui6lZfO2EtU6jhY1bYc0sEx9PhyJVsMVZ2CQK9hModMaWCdzVhJmz7pNgwfKduE+B6DTaOhnLxCMUtO5U/O77U7O4ij2K0rribB0SVxMqta44W4eE1n0aPOs4lNO0tc5MwX4GpXVnTGldRsEmtI5ic8K9rs+C6Iq/XedzFAr28yite8yU1pW3OTGudbp3TlqeIz3A/gVwmeCl+DiqYIvTOlUF257xHOkB9lPpUBLLBNzXabSwM+50ekQROscL0MkOsD8MnnW8FOGrieItbGUFy9ANBtiFnsH+RZTWnUGhgwv2S3MLvbm5uZ6Kgs1dJnDPYGfowogtbKEn/38ZLFh+iQVfTeBsna9s/rpjNSe5F2LYJ/+H6GQH2J9Aad1XUVoHbzp9TQZdRsEmtE7+NuwQnewAO7zVyUsR3iXG2TpfV3jWkbCwv4FaJh5HoYMLVgod5a3Ob6K0DkanUesymhNFt+uMhw5uTsRsncdSofCsJ1HoEoqYgY6ErcOXCVjr4GWCZz0FosMVbCKL8j0nKrc671ePDrdMmNG6b6HQ4VriM+rR4a4mzMyIfRssWDGtOw2iw2ndk6iz7iQFdKfAZYKvnU+jVthHQXS4FTaRRdnWOZUORaqv+476gs1YYRMFa6Y54bbOMogOt9V52hQ6yrbOd0F0SfMnHR3uGjaRhbN1zJx1cHPCVQy2dXjW99RrnezOSRHonojffV9qllhz8sxkNSdc61TYOhq0DtcSm0H3ffCs4yoGr7DJrHR0GrWOYnPCvS7Y1uFZT4PonkWhexY8nzIcMbM7J3BzgrN1HgLRVa45+QEKHe7WxPvUo8PtnKg669rbRdD9EFWw8M5JMisd3XModM+BUDi6H6G0rpsPK3L/BwPsYujg5oQvAE+B6HgW3Jz8GIUukZXRnPwEtcLmo4vc/+EAuxg6nK2D07p7QXTPo9A9jzrrXlCELnLEhgPsYuh+Cp51Krc6pdBlaN0LYJYousEA+89+3u12b9qSFb94MYpf/qrfP/tSv//rjXPnNzbOn/tNatZvf3fh5X7/5Qu/37h4MUi8lMj6Q5z1x7P98Gh/Cg+0cfH8ltSsP18Ij9Tvv3Jx49L5Sxt/2Zz0V5b04t+inJfOvnIpPNa5v2/O+kec9U+W1P8X+/T/vuFbbgsYdP+DRDcYYLchECG64QC7DYGI7jkZDLDbEA7u/tuwYSJaHiJp0EIrOFT0UKmcqLdriKwgr4ZIGtz9C0YH87k2RdQi58WwhR77UOyhUnkx5TktzDrmIfqEBoJb+ISd8B+x8BDfd9hCj30o9lCp3K9bR6FreYhvO7z7F/6KvvDCiUI3aKHHPhR7qBTiWDM+4kgOCh2/+xd8v5rXRH18Fh3XQ6LDtdAodIP/pVROIMq62famcV83/8OHhSV6lYD5vsgWGnMohGYG0W7xO3ahmPX9Wv5/h+HdvzlfEZEl/n2RLTTmUPFDpfKg1DxUWWMKdnj3LxR1F/mOwlF0C11X+Ya4YwE38tuwYcOGDRs2lMX/AcOwXElvsAdXAAAAJXRFWHRkYXRlOmNyZWF0ZQAyMDE0LTA2LTI2VDIxOjUxOjQxKzA4OjAweU3JCgAAACV0RVh0ZGF0ZTptb2RpZnkAMjAxNC0wNi0yNlQyMTo1MTo0MSswODowMAgQcbYAAAAhdEVYdHBzOkhpUmVzQm91bmRpbmdCb3gAMjI2eDE3MCs1MCs1MCQ8dCsAAAAcdEVYdHBzOkxldmVsAEFkb2JlLTIuMCBFUFNGLTIuMAr+WgUDAAAAAElFTkSuQmCC" alt="bar3" width="297" height="223" />
可见很容易绘制出不同颜色的bar图。另外发现图中的横坐标的刻度没有和年份对应起来,想要实现这个改变其实是很简单的事情。
set style fill solid
set palette rgbformulae 7,5,15
plot "data.txt" using 2:xtic(1) title "A" w histograms palette frac 0.1, "" u 3 t "B" w histograms palette frac 0.5, "" u 4 t "C" w histograms palette frac 0.9
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAADsCAMAAADTjJroAAAABGdBTUEAALGPC/xhBQAAAAFzUkdCAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAhxQTFRF////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUgCXUQCWUQCXUgCXUgCYUQCXtSAAtSAAtCAAtCAAtSAAtSAAtCAAtCAAtCAA+b8A9LsA87sA8roA87sA9LwA9LwA8roA87sA8roAtCAA87sAtCAAtSAA8roA87sAtCAAtSAAtSAAtSAAtSAAtSAAUgCXUQCXtSAAtiAAUQCWUQCXUQCWAAAAAAAAAAAAdQxgiBJD8roAnhgiphsXoRodpxwV5ZcA6aMA6KAA6aEA66YAyVEA8roA9LsA87sA9LsA558A2XsA4Y0A3oYA2nwA554Aoxsb34kA66cA2n0A550A3YEA6KAA66kApBsZ3YQA6aIA34oA6qQA3IEAbglr4pAAlRYx24AA6aIAjxQ6mBcs34oA4IwAjBM+6aMA3IMA2XwA6qYA6qQA6aEA66gA6aIA4IoAkhU13oYA4Y8AiRQymxkXhhM2mBkZkBYqnxoU4Y4AAAAADwAcEgAhEgAhKgcCJwcAJAYAJgcALx0AMSUAMycANSgADgoAHQMWJwcAJQcAMyEANCgAMiYAEgAiJgcANSQAIAQNOisANikABQAIIgUMLiMACAAPJQYHOCkAKB4AAAAAUQCWtCAA8roAfg9Reg5YawlucAtndQxf////8EL2aAAAAKp0Uk5TALuIzBEiRKpVmXdm3Vv59Ozv8fDS7nXHM1vNr3UwaXW/RM1pyBEzIiB1UERpXEDNv7u7yMSExJ+Ip58/j5c/p1BcIo5E5NXt39Mz4+vn7ePm4ert1oiPpz/j5+3l4+Xo6+Xh5+To5+rq6Ofr5tjn6+jj6O3q5efh4eXn6ubp5Ojq5un4+Pj4+fnr/fn7/P37+fr7+fr78P38+vv6+vv7/P38+/D9+fP9/PdyzJ1wAAAAAWJLR0QAiAUdSAAAAAlwSFlzAAAAZAAAAGQAD5bF3QAADYBJREFUeNrtnYuf3FQVx5PMTGZmd11S6uBQkJ3ZpcXtbtlZdm1dbG0LPsGqgKDgA7BWRXw/QPGFogKKbuu2Qm194Nut0pa/0CQ3dyebSU7OvXNv7k3mns+nafuZk8nyJeeXk/vLSS3LhAkTJkyYMGHCRCVje3vbtiynZtdV/yRli4YdbN2m1Wqr/lHKFm7bmapbzrRlzaj+UcoWbtt1mpbj+pUb/v0ts37c4OXEnhvzMoK4cY+4rNwfSWTW3gDCWzH4OpbTCrZB3PQ2FHAHkxX8DxGVZaNOBJFZXl7ClGvVO9a0YzWa4d8NOhpeXkJ3xrF9obMduxv+3aCj4SEw1Idbg24YHiorFjh0kxAe6w6VRedsN9h28FiPUFl0M+0p8oeb92XHLbEdPNYjVBVdt9mokT/deiU79sX28FgPUVV07ZZVIxVr0DFGx7ZrpC0w6NgiWNxokLt0g44t/Hq1rFrY9b/91uy4LbaLx3qMiqLjCI91B4OOhse6g3boolK6ufADe6w7aIcuRcA5wg2usC2mXTzWY1QVnU1++TH33+zoxXbxWI9RYXQO6ev6ALr52C4e6zGqis4v2BlSsAsGHVOExUpaYqhgb4/t4rEeo8Lo6sR9Eah19WBFgRjZFUYXXGGnwz/u7/cPWP1+3zpAfu2/o9+/Yz/5dYANndOhRnaF0XGEl5vRcmxqZAdh0NHw8hL8882mRnYQVUVXd7uMe3h5Cc22M0P6ncjC3mvb9nTu96bIqqQQg2665tjRQzXvWDy4tLy8dND/bXF56VDw2yH/t6XgtztJStdnYO/N+86u69bcyMgO0eHOupQ+SGd0jZl6tPBkWUv/y46V2D4e4nvtHSO7suimYr4xhG7AiC4MNgvbSmkhdUbnxNAtAuhWedDRYEN3V0nQhWddlzxmcAhAt1YcOhEFe2B9fn69Nz//TonoQq1rEkm6c+Xw6tra6mBlMPrbkXKhozdG75KILn6FxYbHegx16DbSPxbW1zE+N1EGrVsoBB17eKw7FH+FpUuPd6d/XFV0pdE6jvBYd6iq1rGHx7pD8Vo3oehEat2EoRNRsAtG60bj3RtHj21sHDu6AGbNFXaFfc9xErehsiWj66GgbIyTJRAdfTzsOCrbY/16NnTrYNIJ+HxKZE0YOrhgT8Iqlsg6atANg61gj00WOrhgi9O6e6ILwL3lQdcDk06g0InQuveisoSjC93/nQH2cmqdInSB+z8cYJehdXejssbROjXoQvd/OMBeTq1Tgo64/8MB9pve5ziIMUuU1p1EoTupH7qGz8DZk5dF3P/YAPv7XRexFo0q2BMorTuhX8HWfQbuB/KyiPvPOsAuQ+tKeJkIh5IZB9hxi04V1zoafO4/vNS5gEInwtZRio6GyILtw6WYyBpn0aly6HI6tkTWOEudlUVXca3jQ2e0jhsdfIXtowrWaF1K5HRsiSyjdSlQjNaloIO1zqAD0InUuglDBxfsAkrrRFjYlUPHVrATdoXtCUQ3YQWri4VdQnQTbuvIQ1echV1CdBNt64yHrgcmVd7CHgfdRGtdvV0LXrDFOvvPpHUVtbCnHKvVZJ/9N1pnWY16gI559h+ldaW1sHHogmdO3PjsP9MAe0bBHifvW/0gSuvUWdhrK+FE4pGRRNwAux918rSJwAH2feRHfINJ64q/TKQMwcbCy2PQbgVT/7yz/xmLTgl0umpdyug1C7puLZj65539z1jqjNBdRaFTZ+ukDPyzoLPqPK+vxxXsNdR6nTpbJ+U1E0zoEiFD6zIuALeQ538/pGypc9yzrgB0cCnisjTUuvHQjaV1V1iyNLzCjocOp3Vwx3ZNtdbpiI6WItyxvaFa6woq2Huj2Y4qad2gGHQRlCsorSsJuoKakwQ6+G6CTesm7KyDC/YqSuuuTojWMaFjK9iq300k0PUEohNZsOErEJcX70OhK6g5SaBbB7Ouo86n6xLQpZdiiQr2TZSK0SyR63XppZiB7rCG6NgKVuQqcToUrbQOLlh1WleCgsVpHQxFotbhzjqjddxax1uwkYWNHWDn0jr4CitR63AFy3uZIBY2eoDdaN0wiIWNHmBnaonfREHBZWnZnAQWdmyAHZ7CZirY6yituy6vYHmbE9wUthVa2LEBdnj2X6LW4S4T9OXLKHS8BYub/ScWNnqAnWnRSYbWMaGT25wQCxs9wM601CnD1mFCJ7c5YbSwmQr2GqoU2WwdCQWr8z0sfAFgs3UK0Tp90CnTOp1XTjTXOp1XToq3sCesYEVa2Bo1J0Wg01zr1BRs8RZ2ZZqT4i1sJnQDFDodC1aGhV2Z5qR4C7syzUlPIDplWqezrSPSwmZCl/D1tUJXvK0jAZ2OdxMyLOzKNCfF2zqVaU6Kt7AlNCdqnnTSXOsGKHQ6a51IC1un5sSxWQbYy6V1uCvsgBPddDMwE9ED7MotbI2ak+AfJu/gB9iVW9gSCnbAiS54gf00foC9XBZ2Agpa65AD7I4def2oKexyWdhymxPygBN6gL1cts5AKrp2zT838QPsVbSwx72bkOH+K7ew5TYnyaiUraPzyonmWie7ORkHneYWdgKKVisnmlvY5V05Ua51A43RVcLCVlOwmlvY5W1OlFvYOjcnmlvYOjcnPYHojK0Ty1JuYZe3OSmJraMjupJY2GoKticQnbKCHShBp7mFXd7mRLnW6dycaG5h6/wEu+YWtuTmhLj/nLP/PTBLuYWNK1hedMT95539r4SFzVuwxP3nnf3X3MKW/QR74P7HZv+Z3H/NLeyMy8T983fdPj/fW89sTljc/9js/wTYOh+Ojjhmc0Ikjnf2X3MLO+OsO7UbHa/WEfefd/Zfcws7Q+s+shvduHcTfO6/5lqXUbAJdDpPYX90dbByeHVtLfH+R120TkcflqrYx6KfcSkVikStyyjYUzqcdTitewBEV/wUtmCtk4nuQRQ6ZVqnpmBxFvZDqtDhzjo16D5+5MjDj3zikYc/mZpFVexRlNYVt3JySoeCfSw6+mJqFr12wlon0cLGXWHVXCY+lQ6Fq2CLs7C1KNhPo9Apu0zg7ibUnHWfAQuWrsR9FkQn0dbJuEw8roPWPREd/VBqFlWxJ1FaV5yto8XdhEitK87W0ULrPgeedRTKab21Tk3Bfh6ldWdUaV1GwSa0TsfmhHpdXwDRFf+4zhd1KNgvobTuKVVaV97mRLnWyV45aTkW9wD7l8HLBC3Fp1EFW5zWiSrYdsexuAfYn0iHkrhMwH2dRAs740mnxwWhsxwfHe8A+2PgWUdLEb6bKN7CFlawBN3OADvTO9i/gtK6Myh0cMF+dW6hPzc31xdRsLmXCdw72Am6ICILm+nN/18DC5beYsF3Ezhb5+u7/3PHak5yb8Swb/4P0PEOsH8DpXXfRGkdvOj0LR50GQWb0Dr+x7ADdLwD7PBSJy1FeJUYZ+t8W+BZp4WF/R3UZeJpFDq4YLnQ6bzU+V2U1sHoJGpdRnOS0LqBEnRwc8Jm6zyVCoVmPYNCl1DEDHRa2Dr0MgFrHXyZoFnPguhwBZvI0vmZE5FLnQ+JRzdAoVOjdd9DocO1xGfEo8PdTaiZEfs+WLBsWncaRIfTumdQZ90pHdDhbJ3nUFfYJ0F0uCtsIktnWwdeOWHr634gvmAzrrCJgh0oQUdtnWUQHW6p87QqdDrbOj8E0SXNn3R0uHvYRBbO1hkoQQc3J1TFYFuHZv1IvNYloGildbQlPpiaxdac/HiymhOqdSJsHQlaN9AY3U/As46qGHyFTWalo5OodTo2J9Trgm0dmvUciO55FLrnwfMpwxEbKEFHV07g5gRn6zwKoqtcc/JTFDrco4kPikeHWzkZKEH3M1TBwisnyax0dC+g0L0AQqHofi5K60L3n3OAHW5O6AXgWRAdzYKbk1+g0CWyMpqTXwq6wobuP+8AO87WwWndAyC6F1HoXkSddS+Jak4CR4x3gP1l8KwTudTJhS5D614Cs1jRDQfYfzU7O3uDlxW/fiWM3/x2c/Psuc3N322dv7C1deH871OzXn3top9z7uIfti5d8hMvJ7L+GGX96exm8G1/Dr5o69IFLzXrLxeDb9rcfP3S1uULl7f+ujvpbyTplb+HOefOvn45+K7z/9id9c8o618kafPf5Kf/z8h/5V6fwWz+ADtBtzPAboIhAnTDAXYTDBE+c7IzwG6COaj7b8KEbkHaZ9tuRBvaSI9mhZ9H25Zj5WeRd0vlZNXbNUSWZdVr4BFJ0s5DwEVE2D5POX4HHW6GjfRIVvh5tA33yssi75bKy/I3rWb+ES2nAx2RJDWK4xYE7QE7ZLPTSI9khZ9H252HH6Es8m6pvKxGPRVd8ogtx4aOSJKGDwEXhm666Trb4WbYSI9khZ9H22x0u7Iaqa+SGvmujpub5Z9PNnREkjp8CLgwdH4T2OqEm6xGmnSKflK0zUQXz9r5l6Xg70ot60RWs+3MOFBW9FWF3gaET4C6vlKEm6xG2s8KP4+22ehiWWmiOZrVbtEHd6GsruvWXCCLpA4fAi4MXWPGqXXDTVYj7WeRz8k2G10sK3q3VE5Wt+ZklfWuI2YWbOyHHz4EXFzUg/Y53ACNNPm8ntNpM2fVhRwxSjK3ASZMmDBhwoQG8X+L5XlDFvZ9nAAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAxNC0wNi0yNlQyMjowNzozNCswODowMOAzX38AAAAldEVYdGRhdGU6bW9kaWZ5ADIwMTQtMDYtMjZUMjI6MDc6MzQrMDg6MDCRbufDAAAAIXRFWHRwczpIaVJlc0JvdW5kaW5nQm94ADIyNngxNzArNTArNTAkPHQrAAAAHHRFWHRwczpMZXZlbABBZG9iZS0yLjAgRVBTRi0yLjAK/loFAwAAAABJRU5ErkJggg==" alt="bar4" />
bar4
还有一种常见的绘图就是在各个柱状图上面添加相应的errorbar。那么上述的数据将进行更改。如下:
# file: data.txt
# Year Red Rederror Green Greenerror Blue Blueerror
1990 33 2 45 4 18 3
1991 35 4 42 3 19 2
1992 34 3 44 6 14 2
1993 47 2 15 2 30 3
1994 41 5 14 2 32 2
1995 42 4 20 4 35 2
实现的命令如下:
set style fill solid
set palette rgbformulae 7,5,15
unset colorbox
set style histogram errorbars lw 2
plot "data.txt" using 2:3:xtic(1) title "A" w histograms palette frac 0.1, "" u 4:5 t "B" w histograms palette frac 0.5, "" u 6:7 t "C" w histograms palette frac 0.9
最后的结果为:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAToAAADsCAMAAADTjJroAAAABGdBTUEAALGPC/xhBQAAAAFzUkdCAK7OHOkAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAchQTFRF////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJABDNgBkKgBOIwBAGQAuHQA1BQAJFAAkTQ4AXhEAeBUANAkAaxMAeFwAZ08AbFMAonwAUQ4AXxEAfWAAaxMAVA8AFQQARQwAXREAJgBGMABaCQARHwA6KgBOKwBPAAAAAAAAAAAAFgApPwcskG8AJRwAcFYAkW8AEgAhPQcjHhcAUw0VUw4AGwUAbxMMeU8Af2IA8roAm24A8roAejgAXUgAHBUAcVcAiVQAPwRHWw4dfVkAUgwaWA0caRIMAAAACAAODAAWDAAWFgQBGgUAGxAAIxsACwgADgILGgUAGxMAHRYADgoACgASEQIGHhYAFxIABAAHEwMEAAAAUQCWOwBuFgAohBcAtCAATACMEAAeKwBQbBMAIwYAYREAQQB4MAkA8roADAIAJAYAnBwAVA8AGAQASA0AJgBGCwAUIAA8MQBaRgCCQwc7sYgAQTIAkXAAEAwAMCUA0qEAcVcAgWMAUz8AYUoAIBkAkBoA4q4AYBEAwpUA////WkfRGQAAAG10Uk5TALuIzBEiRKpVmXdm3Vv59Ozv8fbw0u51xzNbza91MGnamXXWzazRIHVbzVuOr6c/575pP6fnvmmO5NXt5+bR8dqn1dO+49rx7ePWM+1E4b7nP+3Y7fDv+fn9+fv8/fv8+/P9/Pz78Pv9/Pnz/e/Fr4sAAAABYktHRACIBR1IAAAACXBIWXMAAABkAAAAZAAPlsXdAAAKPElEQVR42u3djXvrVB0H8OTkpe1WRy5ci2VcX2bRUXW+FURFYYivgC9XFBXF93e7rVMHdlymA64tcAdXkL+X85I0aZvknJNmaZt8v8+zPLtPf93JPrenTXvyywwDQRAEQRAEKWX6/b5pGMQy7WXvybrFMdnWrRn1xrJ3Zd3iNsiGbZBNw2gue1fWLW7DJTWDuHTm8n+/b4vmDk+SK3fKKljuvKJWdRcd8i5JlXSX8qy6yhDer8LXMkidbVnu/oASOFGpYv8hKlVtt++2JVWm0gMhzypPVrDhGnbL2CSGU+P/XgZd8IgvCiUnunaTmPSJziSm+H8HXRBPgcEOt6AL4ylVRaJGZxibJo3uD09MGl0715HU4+neQZXOca0NpQeVUtLo7HxGIn1H7w6e7giqdPRhn5+cZMLmMlKzsSG+uWc7OfdG7uDpjlBWunbNscR31w6Ssx25h6c7RFnpGnXDEjMWdJppmaYlDgtApxf24YYj3qWDTi90vhqGxY/6P3gtOR+K3MXTHaOkdBni6d4BdEE83TusHB2dRh/+yLVr9+TKohJP9w4rR3d4cHB0OP0EniEue4Wta93F0x2jrHSm+KLZGSTno6CLpSPiuG7nODkd0M3T0QnbrIMu1oYQkvIhIp+sTV51H+hm6ZoNCZ3d4lU50tnsEwWxkL3GdJL94a+wm7zKdpMTXVxSoCOtYCG7xHQZ9tqTVtSJGSxks4AuiCcroI83M1jIZsmXzmGzQOFnpdH9/fAf/zxcmM72J2OOdLUGaYqnV38J+6ppstVFSU4Gg+dfGAw+JinbNFuWypJMGt2/jmgWpdu0iNkQVR/fTc79opqvJF2VDdh2Xcv1F7I5ndqjbnB8PBxMvyJl+IWU6OY/SdMfyWna/gdPprt7mpxu5D6ewn6bk4Xs0tJtkLAqTzoevSXsdaMjl0kXpJx0/FHXdstG94lOp9OnX5+8RDr+XFcTh8T3d5PzqfWiY2/H+/Rr7xLpoq+wqhKelptRWjp6XOco7k8QT0ONp6x0elUsnmphENAF8VQLg4AuiKdaGAR0QTzVwiCgC+KpFgYBXRBPtTAI6IJ4qoVB8qT79N7e3mc+u7f3udSq4ug+3+v1Hniw1/vC6tMxFFa1J60qho6dHsY+ce6BDnSgA50i3cnwxRvDlaFz/BeAh9aB7iV2YtDK0LkHKkuOudPx1f9JA7v6hJ090aCCdGz1P2xgB506HV/9DxvYQadMJ1b/w8bKu79IiEIzZrnpHHbG2RVZlVj9jzSwf8l1XXkPX7np+MlQX5ZVidV/3Qb2ktPxeAo17KQQzQZ20EUH1179B91M8qHjz7POzvHg7N//OQOdHp1pCjoa0OnQiRNkgtPsQQc60JWI7uSsf3ZSCN3h+cuvvFouurPC6M7PS0WXWpXzhGUBHehAl4GOf0BhL5EutSNmpenaZrNptpdIl9oRs9J0SlWXO2FTViBBBzrQXRrdTYX+RdDF0r2q0L8Iulg6laqc6eyGxS6wpdv7DzreeFav6ff+g44eUNuMTrv3H3R891tutPdf1sBOp3afSOh629sPP7y9/ZUVp/tqt/vIo93u/lyhWgM7jS3ONlFtYOcXqkmn2z44OD8/OPjvitONTk/Ho+km2Eg8GUSjzrr+dXr/QeenbbGuf53ef9AFsXUvXw+6hBRId2+v99hjvd7XLoPOZa9ms6+e5aE7VK3K9KiLuSQb6EAHOtAp0j3U6z34QK/XWx4dP9Kf/ftPGeleG7/+xrgoOopyeERHXx6d7TYawZHUonS3RjTVoYtFyTxhZ69GBDrQga54ut3d3ccfn1wEEXQadBTl4mIOBXSgAx3olOnOX3n5/FBGd/P86Oj8pgxFrapEdDQKdDQKdCpVK0vnL2GrNrBv+6NLJyyLGsra0oklbOUGdtCFEUvYyg3soIuGLWFHGtjTu7DXhe7WxXh8cSsrnVoXtsGXsCMN7Om9/0une3M0euut0ehNKR1NZjq13n+xhK3cwL50On8qjiR0sSg5T1ixhK3cwA66SPSWsEGXHNCBDnSgAx3oQAc60IEOdKADHeimUUbsLOER6DI96lhABzrQgQ50oFt1OmLqNLCDLsxmjS0mKjewgy4yaJutwCo3sIMuGsfcVG9grwadYgM7Ca4coNSFXQ06Hk8mJ05wUm5gB12YhkUfm+oN7KCbzxqt/q8aXZBq0Jn8tRB0GejcDct1QJeFTvRDgw50oAMd6EAHOtCBDnSgAx3oQAc6JTo3rpFxji62qup0ptWaXwWao4utqjqd2AkZXWzV2tOJ1f/svf/VpROr/wv0/leXTqz+L9D7X106sfof6f3XXf1fQ7qvdzrf+Gan08ll9T/S+1+BR923jo8HQzpiLqv/C/T+V5dOrP4v0PtfXbrJ4FlX/0EX5DLovt3tPvpIt/udJ0CnS/ck/VXH9Osp0IEOdKBbS7rv7u9/7/v7+/s/AJ0u3XWBcroLOtCBDnSgOx2/8fr4tQXpCH2zTapHx/6ayK0F6dpu321Xj078uotO2L5RwQkLOtCtKF3sn7nSpUtrJgnphjdeHJ6UiC72z1zp0qU1k4R0A5qXFqers4tLZ2xgz3nCxlznWnvCpiwTRiYsz6J0jRYxMjewV5uO72/WBnbQRRvYta7Bfv304vb/LkYF0P1wZ2enT78KoVO7Bnu4v/4SttaV/ykdTRF0T9OKfvjrXi6d6pX/2f5mbWC/LgYvGx2Pp0aXtYG94nT+4JmWsEEXCejWkO5HsX+/RI/ux4PBC8/TdwoVo3sy9gKmenRPp76xBx3oQFcY3duD/uBt0GWhOxsOh2egy0I39euCDnSgWzLdO6Pbt0fvLEg3+P+NxI/Oy0v37pjm3QXp6GtJ4oJNeeliUbQnbAoK6EAHOtCBrrR0zyjRPaNE95O86Pjqf8YG9mrT8dX/rA3s1abjCwJZG9hBF21g/+nW1tYdXlJ+9izPz3/xHM8vfyXy69iq3/xWVP1OFP3+D9NVf4yv8mKr/iSKnvtzbNXVZ2Or/jJd9Ve/6m+pVezHUYMteQO7oJs0sCMaYXRhAzuiEb74OWlgR7QzfzolgqxGxOGzaTr+JjiQnq/it/vbOjHkVeLaUpIqu2EpVBmGbaWOKIomJwEXEX74vEHoETTfhAfSc1X8dn/L7yWrEteWklXRTb0mH9EgrbQRRZFTnBtLcAzYEpvJgfRcFb/d38aehTNbJa4tJaty7Fi62RHrxEwbURSFJwEXRrdZc0mfb8ID6bkqfru/TaabqnJiLyU197NarrSKPp7MtBFFaXgScGF09CCw3uKbpANpcaRIi/xtIl20avKXpdJ/Vuy0nqmqNUiTpFX5P6rQtwH8DFCXPlPwTdKBNK3it/vbZLpIVdyT5nxVox6cuJtW1XZdy02pEqXhScCF0TlNYrX5JulAmlaJ28U2mS5S5V9bSlLVtkjStJ4aMXHCRnY+PAm4uNjs8JlvUg6kxe225Ehbu8rOZUS/CG8DEARBEGQF8h65RQwgtpq3yAAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAxNC0wNi0yNlQyMjo0NDoxOCswODowMD5Y+vcAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMTQtMDYtMjZUMjI6NDQ6MTgrMDg6MDBPBUJLAAAAIXRFWHRwczpIaVJlc0JvdW5kaW5nQm94ADIyNngxNzArNTArNTAkPHQrAAAAHHRFWHRwczpMZXZlbABBZG9iZS0yLjAgRVBTRi0yLjAK/loFAwAAAABJRU5ErkJggg==" alt="bar5" />
bar5
结果导出
这一步借用了一个单个的命令文件,内容如下:
set terminal push # 将终端的命令暂时保存
set terminal postscript eps size 8cm, 6cm color solid # 设置导出的文件格式,尺寸
set output "$0"
replot # 重新绘制图形
set output # 恢复到最初设置
set terminal pop
在终端使用:call "export.gp" "result.ps"
,就能够获得最终导出的图像。将ps格式的图形转换成一定分辨率其他格式的图形,可以使用’imagemagick convert’软件,采用的命令如:convert -density 300x300 result.ps result.png
进一步的资料
- 《gnuplot in action》,《gnuplot cookbook》,《gnuplot manual》,见传送门
- 官网上的各种示例
- 用 Java 技术创建 RESTful Web (服务 JAX-RS:一种更为简单、可移植性更好的替代方式)
作者: Dustin Amrhein, 软件工程师, IBM Nick Gallardo, 软件工程师, IBM 出处: http://www.ibm.com/developerworks/cn/we ...
- 一款好用的绘图软件gnuplot
漂亮的图片在一篇报告中是必不可少的.这里推荐一款绘图软件Gnuplot. Gnuplot是一种免费分发的绘图工具,可以移植到各种主流平台,无论是在Linux还是在Windows都易于安装使用.最新的版 ...
- SaltStack介绍——SaltStack是一种新的基础设施管理方法开发软件,简单易部署,可伸缩的足以管理成千上万的服务器,和足够快的速度控制,与他们交流
SaltStack介绍和架构解析 简介 SaltStack是一种新的基础设施管理方法开发软件,简单易部署,可伸缩的足以管理成千上万的服务器,和足够快的速度控制,与他们交流,以毫秒为单位.SaltSta ...
- echars vue 封装全局组件 曲线 柱状图 同v-chars绿色系 配置样式
Echars vue封装 ,曲线图 <!DOCTYPE html> <html lang="en"> <head> <meta chars ...
- 记录下一个C++初始化的方式(很少有人这么用,但是却是一个使代码更加简洁的方式)
很多时候,在一个类创建的时候给它初始化,一般呢,99%的人都会这么用: //A.h Class CA { int a; char* p; int getValue(); }; //A.cpp CA:: ...
- Spark WordCount的两种方式
Spark WordCount的两种方式. 语言:Java 工具:Idea 项目:Java Maven pom.xml如下: <properties> <spark.version& ...
- Hadoop Hive概念学习系列之hive三种方式区别和搭建、HiveServer2环境搭建、HWI环境搭建和beeline环境搭建(五)
说在前面的话 以下三种情况,最好是在3台集群里做,比如,master.slave1.slave2的master和slave1都安装了hive,将master作为服务端,将slave1作为服务端. 以 ...
- [LeetCode] House Robber II 打家劫舍之二
Note: This is an extension of House Robber. After robbing those houses on that street, the thief has ...
- AngularJS中的表单验证
AngularJS中的表单验证 AngularJS自带了很多验证,什么必填,最大长度,最小长度...,这里记录几个有用的正则式验证 1.使用angularjs的表单验证 正则式验证 只需要配置一个正则 ...
随机推荐
- PHP基础知识之字符串运算符
两个字符串相加用 . 运算符(类似于+),如$a="str1" . "str2";$b=$a . "str3";=>"str ...
- ArcGIS10的附件功能
转自 积思园 http://blog.csdn.net/linghe301/article/details/6386176 老是忘记怎么使用这个ArcGIS10的附件功能,这次就做个记录吧. 在项目应 ...
- 测试函数用Return 返回值和用函数名返回值的区别
'*************************************************************************'**模 块 名:工程1 - Form1'**说 ...
- IRP完成例程返回值理解
第一,完成例程里面直接返回STATUS_SUCCESS,这时候IRP已经继续向上回卷,失去了对IRP的控制. 第二,完成例程里面返回STATUS_MORE_PROCESSING_REQUIRED,仍具 ...
- 如何将Eclipse中的项目迁移到Android Studio 中
如何将Eclipse中的项目迁移到Android Studio 中 如果你之前有用Eclipse做过安卓开发,现在想要把Eclipse中的项目导入到Android Studio的环境中,那么首先要做的 ...
- 采访Philipp Crocoll:安卓平台上整合Java和C#
在这个采访中,我们跟开源开发者Philipp Crocoll讨论了关于Keepass2Android的相关话题.Keepass2Android不仅具有强大的密码存储的功能,还是在一个单独的安卓应用同时 ...
- Some practices to write better C#/.NET code(译)
C#(.NET)中有关编码的一些建议,原文地址:http://www.codeproject.com/Articles/539179/Some-practices-to-write-better-Cs ...
- shell日常案例(一)
序 在linux平台下开发,我们经常会接触到一些任务性质的工作,而处理方式多样化.现积累各个案例. 清理近7天的数据 日志文件越来越大,我们需要及时的去做清理工作.配合工具:find, ...
- Tomcat7基于Redis的Session共享实战一
本文主要介绍如何使用redis对tomcat7的session进行托管. 1.安装Redisredis安装比较简单,此处略过. 2.配置两个Tomcat在本机上配置两个Tomcat,分别为tomcat ...
- Redis学习笔记~目录
回到占占推荐博客索引 百度百科 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合). ...