python验证码识别(2)极验滑动验证码识别
一:极验滑动验证码简介
近些年来出现了一些新型验证码,不想旧的验证码对人类不友好,但是这种验证码对于代码来说识别难度上升了几个等级。因此需要其他的手段进行处理。
识别需要的python库:selenium和ChromeDriver驱动,不同浏览器的要下载的驱动库不同。
验证码获取网站:http://www.geetest.com/
极验滑动验证码已经到了3.0版本,相关于图形验证码识别难度更大,原理是拖动图片到缺口处,然后拼合图像进行验证,会生成三个加密参数,通过表单提交到后台,后台再进行验证。
极验验证码还增加了机器学习的方法来识别是否是恶意程序进行识别,有防模拟,防伪造,防暴力的方式, 只需0.4秒,并且保护资源不被滥用和盗取。
我们的程序一般只要不是恶意进行爬取的,并遵守爬虫协议,就可以。千万不要给服务器造成负担。
二:极验滑动验证码识别思路
这里我们可以采用模拟浏览器动作的方式完成验证,用Selenium来完全模拟人的行为完成验证。
主要分为三步
(1)模拟点击验证按钮
(2)识别滑动缺口的位置
(3)模拟拖动滑块
第(1)步还比较好说,第(2)步操作识别接口的位置比较关键,需要用到图像处理看到接口的位置,并和原图对比检测的方法来识别缺口的位置。同时获取两张图片,设定一个对比阈值,然后遍历两张图片,找出相同像素RGB差距超过此阈值的像素点,那么像素点位置就是缺口的位置。
第(3)步较难,由于人的移动轨迹是先加速后减速,匀速移动和随机移动等方法都不能通过验证,要模拟好这个过程。
三:极验验证码识别
1.极验验证码官网:https://auth.geetest.com/login/
官网图片为:
2.初始化配置
# 注册的用户名和密码
email = ''
password = ''
class CrackGeetest():
def __init__(self):
self.url = 'https://account.geetest.com/login'
self.browser = webdriver.Chrome()
self.wait = WebDriverWait(self.browser, 20)
self.email = email
self.password = password
3.模拟点击
识别验证码第一步就是模拟点击初始的验证按钮,用显式等待的方法进行获取。
def get_geetest_button(self):
"""
获取初始验证按钮
返回值:按钮对象
"""
button = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'geetest_radar_tip')))
return button
在调用位置即可模拟点击:
# 点击验证按钮
button = self.get_geetest_button()
button.click()
4.识别缺口
接下来识别缺口的位置,首先获取两张图片,进行对比,不一样的位置就是缺口。
获取不带缺口的图片。用selenium选取图片元素得到整个网页的截图然后裁剪即可,代码如下:
def get_screenshot(self):
"""
获取网页截图
:return: 截图对象
"""
screenshot = self.browser.get_screenshot_as_png()
screenshot = Image.open(BytesIO(screenshot))
return screenshot
def get_position(self):
"""
获取验证码位置
:return: 验证码位置元组
"""
img = self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, 'geetest_canvas_img')))
time.sleep(2)
location = img.location
size = img.size
top, bottom, left, right = location['y'], location['y'] + size['height'], location['x'], location['x'] + size[
'width']
return (top, bottom, left, right)
def get_geetest_image(self, name='captcha.png'):
"""
获取验证码图片
:return: 图片对象
"""
top, bottom, left, right = self.get_position()
print('验证码位置', top, bottom, left, right)
screenshot = self.get_screenshot()
captcha = screenshot.crop((left, top, right, bottom))
captcha.save(name)
return captcha
接下来需要获取第二张图片,就是带有缺口的图片,只需要点击下面的滑块就能出现缺口,代码如下:
def get_slider(self):
"""
获取滑块
:return: 滑块对象
"""
slider = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'geetest_slider_button')))
return slider
用click()即可触发点击,如下:
# 点按呼出缺口
slider = self.get_slider()
slider.click()
接下来就是通过对比图片获取缺口,通过遍历图片上的每个坐标点,获取两张图片对应像素点的RGB数据。如果在一定范围内,那就代表两个像素相同,继续对比下一个像素点。如果差距超过一定范围,则代表像素点不同,当前位置就是缺口位置。通过设置一个阈值threshold,来进行判断,代码如下:
def is_pixel_equal(self, image1, image2, x, y):
"""
判断两个像素是否相同
:param image1: 图片1
:param image2: 图片2
:param x: 位置x
:param y: 位置y
:return: 像素是否相同
"""
# 取两个图片的像素点
pixel1 = image1.load()[x, y]
pixel2 = image2.load()[x, y]
threshold = 60
if abs(pixel1[0] - pixel2[0]) < threshold and abs(pixel1[1] - pixel2[1]) < threshold and abs(
pixel1[2] - pixel2[2]) < threshold:
return True
else:
return False
def get_gap(self, image1, image2):
"""
获取缺口偏移量
:param image1: 不带缺口图片
:param image2: 带缺口图片
:return:
"""
left = 60
for i in range(left, image1.size[0]):
for j in range(image1.size[1]):
if not self.is_pixel_equal(image1, image2, i, j):
left = i
return left
return left
5.模拟拖动
模拟拖动并不复杂,但是里面的细节比较多。用相关的函数将滑块拖动到对应的位置即可。但是要是匀速拖动,会必然识别出是程序,非人类操作,因为人类无法做到完全匀速拖动,会识别出是机器操作,使得验证码失败。
通过不同的方法检测,我们发现把前段滑块做匀加速运动,后段滑块做匀减速运动,即可完成验证。
这里加速度用a来表示,当前速度用v表示,初速度用vo表示,位移用x表示,时间用t表示。
代码如下:
def get_track(self, distance):
"""
根据偏移量获取移动轨迹
:param distance: 偏移量
:return: 移动轨迹
"""
# 移动轨迹
track = []
# 当前位移
current = 0
# 减速阈值
mid = distance * 4 / 5
# 计算间隔
t = 0.2
# 初速度
v = 0
while current < distance:
if current < mid:
# 加速度为正2
a = 2
else:
# 加速度为负3
a = -3
# 初速度v0
v0 = v
# 当前速度v = v0 + at
v = v0 + a * t
# 移动距离x = v0t + 1/2 * a * t^2
move = v0 * t + 1 / 2 * a * t * t
# 当前位移
current += move
# 加入轨迹
track.append(round(move))
return track
def move_to_gap(self, slider, track):
"""
拖动滑块到缺口处
:param slider: 滑块
:param track: 轨迹
:return:
"""
ActionChains(self.browser).click_and_hold(slider).perform()
for x in track:
ActionChains(self.browser).move_by_offset(xoffset=x, yoffset=0).perform()
time.sleep(0.5)
ActionChains(self.browser).release().perform()
6:全部代码
import time
from io import BytesIO
from PIL import Image
from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
EMAIL = 'cqc@cuiqingcai.com'
PASSWORD = ''
BORDER = 6
INIT_LEFT = 60
# 注册的用户名和密码
email = ''
password = ''
class CrackGeetest():
def __init__(self):
self.url = 'https://account.geetest.com/login'
self.browser = webdriver.Chrome()
self.wait = WebDriverWait(self.browser, 20)
self.email = email
self.password = password
def __del__(self):
self.browser.close()
def get_geetest_button(self):
"""
获取初始验证按钮
返回值:按钮对象
"""
button = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'geetest_radar_tip')))
return button
def get_screenshot(self):
"""
获取网页截图
:return: 截图对象
"""
screenshot = self.browser.get_screenshot_as_png()
screenshot = Image.open(BytesIO(screenshot))
return screenshot
def get_position(self):
"""
获取验证码位置
:return: 验证码位置元组
"""
img = self.wait.until(EC.presence_of_element_located((By.CLASS_NAME, 'geetest_canvas_img')))
time.sleep(2)
location = img.location
size = img.size
top, bottom, left, right = location['y'], location['y'] + size['height'], location['x'], location['x'] + size[
'width']
return (top, bottom, left, right)
def get_geetest_image(self, name='captcha.png'):
"""
获取验证码图片
:return: 图片对象
"""
top, bottom, left, right = self.get_position()
print('验证码位置', top, bottom, left, right)
screenshot = self.get_screenshot()
captcha = screenshot.crop((left, top, right, bottom))
captcha.save(name)
return captcha
def get_slider(self):
"""
获取滑块
:return: 滑块对象
"""
slider = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'geetest_slider_button')))
return slider
def open(self):
"""
打开网页输入用户名密码
:return: None
"""
self.browser.get(self.url)
email = self.wait.until(EC.presence_of_element_located((By.ID, 'email')))
password = self.wait.until(EC.presence_of_element_located((By.ID, 'password')))
email.send_keys(self.email)
password.send_keys(self.password)
def is_pixel_equal(self, image1, image2, x, y):
"""
判断两个像素是否相同
:param image1: 图片1
:param image2: 图片2
:param x: 位置x
:param y: 位置y
:return: 像素是否相同
"""
# 取两个图片的像素点
pixel1 = image1.load()[x, y]
pixel2 = image2.load()[x, y]
threshold = 60
if abs(pixel1[0] - pixel2[0]) < threshold and abs(pixel1[1] - pixel2[1]) < threshold and abs(
pixel1[2] - pixel2[2]) < threshold:
return True
else:
return False
def get_gap(self, image1, image2):
"""
获取缺口偏移量
:param image1: 不带缺口图片
:param image2: 带缺口图片
:return:
"""
left = 60
for i in range(left, image1.size[0]):
for j in range(image1.size[1]):
if not self.is_pixel_equal(image1, image2, i, j):
left = i
return left
return left
def get_track(self, distance):
"""
根据偏移量获取移动轨迹
:param distance: 偏移量
:return: 移动轨迹
"""
# 移动轨迹
track = []
# 当前位移
current = 0
# 减速阈值
mid = distance * 4 / 5
# 计算间隔
t = 0.2
# 初速度
v = 0
while current < distance:
if current < mid:
# 加速度为正2
a = 2
else:
# 加速度为负3
a = -3
# 初速度v0
v0 = v
# 当前速度v = v0 + at
v = v0 + a * t
# 移动距离x = v0t + 1/2 * a * t^2
move = v0 * t + 1 / 2 * a * t * t
# 当前位移
current += move
# 加入轨迹
track.append(round(move))
return track
def move_to_gap(self, slider, track):
"""
拖动滑块到缺口处
:param slider: 滑块
:param track: 轨迹
:return:
"""
ActionChains(self.browser).click_and_hold(slider).perform()
for x in track:
ActionChains(self.browser).move_by_offset(xoffset=x, yoffset=0).perform()
time.sleep(0.5)
ActionChains(self.browser).release().perform()
def login(self):
"""
登录
:return: None
"""
submit = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'login-btn')))
submit.click()
time.sleep(10)
print('登录成功')
def crack(self):
# 输入用户名密码
self.open()
# 点击验证按钮
button = self.get_geetest_button()
button.click()
# 获取验证码图片
image1 = self.get_geetest_image('captcha1.png')
# 点按呼出缺口
slider = self.get_slider()
slider.click()
# 获取带缺口的验证码图片
image2 = self.get_geetest_image('captcha2.png')
# 获取缺口位置
gap = self.get_gap(image1, image2)
print('缺口位置', gap)
# 减去缺口位移
gap -= BORDER
# 获取移动轨迹
track = self.get_track(gap)
print('滑动轨迹', track)
# 拖动滑块
self.move_to_gap(slider, track)
success = self.wait.until(
EC.text_to_be_present_in_element((By.CLASS_NAME, 'geetest_success_radar_tip_content'), '验证成功'))
print(success)
# 失败后重试
if not success:
self.crack()
else:
self.login()
if __name__ == '__main__':
crack = CrackGeetest()
crack.crack()
这种方法对于不同的极验滑动验证码来说都适用,关键在于识别的思路,如何识别缺口位置,如何生成运动轨迹等。之后遇到类似的验证码,都可以这样进行识别。
python验证码识别(2)极验滑动验证码识别的更多相关文章
- Python 破解极验滑动验证码
Python 破解极验滑动验证码 测试开发社区 1周前 阅读目录 极验滑动验证码 实现 位移移动需要的基础知识 对比两张图片,找出缺口 获得图片 按照位移移动 详细代码 回到顶部 极验滑动验证码 以 ...
- Python——破解极验滑动验证码
极验滑动验证码 以上图片是最典型的要属于极验滑动认证了,极验官网:http://www.geetest.com/. 现在极验验证码已经更新到了 3.0 版本,截至 2017 年 7 月全球已有十六万家 ...
- thinkphp整合系列之极验滑动验证码
对于建站的筒子们来说:垃圾广告真是让人深恶痛绝:为了清净:搞个难以识别的验证码吧:又被用户各种吐槽:直到后来出现了极验这个滑动的验证码:这真是一个体验好安全高的方案:官网:http://www.gee ...
- selenium+java破解极验滑动验证码的示例代码
转自: https://www.jianshu.com/p/1466f1ba3275 selenium+java破解极验滑动验证码 卧颜沉默 关注 2017.08.15 20:07* 字数 3085 ...
- vue_drf之实现极验滑动验证码
一.需求 1,场景 我们在很多登录和注册场景里,为了避免某些恶意攻击程序,我们会添加一些验证码,也就是行为验证,让我们相信现在是一个人在交互,而不是一段爬虫程序.现在市面上用的比较多的,比较流行的是极 ...
- selenium处理极验滑动验证码
要爬取一个网站遇到了极验的验证码,这周都在想着怎么破解这个,网上搜了好多知乎上看到有人问了这问题https://www.zhihu.com/question/28833985,我按照这思路去大概实现了 ...
- luffy之多条件登录与极验滑动验证码
多条件登录 JWT扩展的登录视图,在收到用户名与密码时,也是调用Django的认证系统中提供的authenticate()来检查用户名与密码是否正确. 我们可以通过修改Django认证系统的认证后端( ...
- selenium+java破解极验滑动验证码
摘要 分析验证码素材图片混淆原理,并采用selenium模拟人拖动滑块过程,进而破解验证码. 人工验证的过程 打开威锋网注册页面(https://passport.feng.com/?r=user/r ...
- thinkphp整合系列之极验滑动验证码geetest
给一个央企做官网,登录模块用的thinkphp验证码类.但是2019-6-10到12号,国家要求央企检验官网漏洞,防止黑客攻击,正直贸易战激烈升级时期,所以各事业单位很重视官网安全性,于是乎集团总部就 ...
随机推荐
- js格式化JSON数据
前言: 最近做的项目中遇到个需要在前端页面中将某个设备需要的数据格式展示出来,方便用户配置.一开始单纯的将数据格式写入到pre标签中, 但是通过pre标签写入的数据格式在代码可视化上不是很优雅.由于上 ...
- Git - Git简介与客户端安装
简介 Git是目前世界上最先进的分布式版本控制系统(没有之一)! 集中式版本控制系统(CVS/SVN),版本库是集中存放在中央服务器的,而一般工作的时候,用的都是自己的电脑,所以要先从中央服务器取得最 ...
- [Abp vNext 源码分析] - 5. DDD 的领域层支持(仓储、实体、值对象)
一.简要介绍 ABP vNext 框架本身就是围绕着 DDD 理念进行设计的,所以在 DDD 里面我们能够见到的实体.仓储.值对象.领域服务,ABP vNext 框架都为我们进行了实现,这些基础设施都 ...
- Java生鲜电商平台-电商虚拟币的充值与消费思考
Java生鲜电商平台-电商虚拟币的充值与消费思考 项目背景 最近由于项目业务原因,需要为系统设计虚拟币的充值及消费功能.公司内已经有成熟的支付网关服务,所以重点变成了如何设计项目内虚拟币的充值流程,让 ...
- MySql Navicat可视化工具
下载链接 链接:https://pan.baidu.com/s/1ca5KbpCFc4UbcYkXZDu6aA 提取码:8nku 安装比较简单,选完安装路径,下一步即可 Navicat for MyS ...
- flutter 打包apk
打包的具体操作,可以参照官网,只是官网没有那么细 1.修改AndroidManifest.xml 2.构建配置 可以跳过 3.构建签名 4.创建 key.properties 5.配置混淆 6.修改 ...
- Linux-shell学习笔记1
1.检查 /etc/shells 这个文件可以得到有多少可用的shell,一般有一下几个: /bin/sh (已经被 /bin/bash 所取代) /bin/bash (就是 Linux 默认的 sh ...
- Hacking/Penetrating tester bookmark collection
Blogs http://carnal0wnage.blogspot.com/ http://www.mcgrewsecurity.com/ http://www.gnucitizen.org/blo ...
- 成功安装SQL Server实例后 无法找到SQL Server Configuration Manager工具的解决方案
有一次成功安装SQL Server实例后 ,但是在所有程序中无法找到SQL Server Configuration Manager工具,以下步骤是我们当时的解决方案.最后成功将这个工具的转移到了桌面 ...
- Linux 内核虚拟地址到物理地址转换讨论【转】
转自:https://blog.csdn.net/sunlei0625/article/details/59476987 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请 ...