描述

The NASA Space Center, Houston, is less than 200 miles from San Antonio, Texas (the site of the ACM Finals this year). This is the place where the astronauts are trained for Mission Seven Dwarfs, the next giant leap in space exploration. The Mars Odyssey program revealed that the surface of Mars is very rich in yeyenum and bloggium. These minerals are important ingredients for certain revolutionary new medicines, but they are extremely rare on Earth. The aim of Mission Seven Dwarfs is to mine these minerals on Mars and bring them back to Earth.

The Mars Odyssey orbiter identified a rectangular area on the surface of
Mars that is rich in minerals. The area is divided into cells that form
a matrix of n rows and m columns, where the rows go from east to west
and the columns go from north to south. The orbiter determined the
amount of yeyenum and bloggium in each cell. The astronauts will build a
yeyenum refinement factory west of the rectangular area and a bloggium
factory to the north. Your task is to design the conveyor belt system
that will allow them to mine the largest amount of minerals.

There are two types of conveyor belts: the first moves minerals from
east to west, the second moves minerals from south to north. In each
cell you can build either type of conveyor belt, but you cannot build
both of them in the same cell. If two conveyor belts of the same type
are next to each other, then they can be connected. For example, the
bloggium mined at a cell can be transported to the bloggium refinement
factory via a series of south-north conveyor belts.

The minerals are very unstable, thus they have to be brought to the
factories on a straight path without any turns. This means that if there
is a south-north conveyor belt in a cell, but the cell north of it
contains an east-west conveyor belt, then any mineral transported on the
south-north conveyor beltwill be lost. The minerals mined in a
particular cell have to be put on a conveyor belt immediately, in the
same cell (thus they cannot start the transportation in an adjacent
cell). Furthermore, any bloggium transported to the yeyenum refinement
factory will be lost, and vice versa.

Your program has to design a conveyor belt system that maximizes the
total amount of minerals mined,i.e., the sum of the amount of yeyenum
transported to the yeyenum refinery and the amount of bloggium
transported to the bloggium refinery.

输入

The
input contains several blocks of test cases. Each case begins with a
line containing two integers: the number 1 ≤ n ≤ 500 of rows, and the
number 1 ≤ m ≤ 500 of columns. The next n lines describe the amount of
yeyenum that can be found in the cells. Each of these n lines contains m
integers. The first line corresponds to the northernmost row; the first
integer of each line corresponds to the westernmost cell of the row.
The integers are between 0 and 1000. The next n lines describe in a
similar fashion theamount of bloggium found in the cells.

The input is terminated by a block with n = m = 0.

输出

For each test case, you have to output a single integer on a separate line: the maximum amount of mineralsthat can be mined.

样例输入

4 4
0 0 10 9
1 3 10 0
4 2 1 3
1 1 20 0
10 0 0 0
1 1 1 30
0 0 5 5
5 10 10 10
0 0

样例输出

98

提示

Huge input file, 'scanf' recommended to avoid TLE.

题意

N*M的方格,每个方格里有A和B矿石,A矿石只能往左运输,B只能往上,每个方格只能放最多1个传送带,问你最大能得到多少矿石

题解

dp[i][j]代表从(1,1)->(n,m)所得到的最大矿石

可以知道dp[i][j]=max(dp[i-1][j]+a[i][j],dp[i][j-1]+b[i][j]);

dp[i-1][j]+a[i][j];代表(1,1)->(i-1,j)的最大值,加上当前点左边的全部左移

dp[i][j-1]+a[i][j];代表(1,1)->(i,j-1)的最大值,加上当前点上边的全部上移

初始值i=0或j=0,dp[i][j]=0

代码

 #include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int N=;
int n,m;
int dp[N][N],a[][N][N];
int main()
{
while(scanf("%d%d",&n,&m)!=EOF,n||m)
{
for(int k=;k<;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
scanf("%d",&a[k][i][j]);
if(!k)a[][i][j]+=a[][i][j-];
else a[][i][j]+=a[][i-][j];
}
memset(dp,,sizeof dp);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
dp[i][j]=max(dp[i-][j]+a[][i][j],dp[i][j-]+a[][i][j]);
printf("%d\n",dp[n][m]);
}
return ;
}

TZOJ 1800 Martian Mining(二维dp)的更多相关文章

  1. 洛谷p1732 活蹦乱跳的香穗子 二维DP

    今天不BB了,直接帖原题吧  地址>>https://www.luogu.org/problem/show?pid=1732<< 题目描述 香穗子在田野上调蘑菇!她跳啊跳,发现 ...

  2. HDU - 2159 FATE(二维dp之01背包问题)

    题目: ​ 思路: 二维dp,完全背包,状态转移方程dp[i][z] = max(dp[i][z], dp[i-1][z-a[j]]+b[j]),dp[i][z]表示在杀i个怪,消耗z个容忍度的情况下 ...

  3. 传纸条 NOIP2008 洛谷1006 二维dp

    二维dp 扯淡 一道比较基本的入门难度的二维dp,类似于那道方格取数,不过走过一次的点下次不能再走(看提交记录里面好像走过一次的加一次a[i][j]的也AC了,,),我记得当年那道方格取数死活听不懂, ...

  4. 洛谷P1048 采药 二维dp化一维

    题目描述 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为此,他想拜附近最有威望的医师为师.医师为了判断他的资质,给他出了一个难题.医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个 ...

  5. 关于二维DP————站上巨人的肩膀

    意匠惨淡经营中ing, 语不惊人死不休........ 前几天学了DP,做了个简单的整理,记录了关于DP的一些概念之类的,今天记录一下刚学的一个类型 ----关于二维DP 那建立二维数组主要是干嘛用的 ...

  6. BZOJ 2748: [HAOI2012]音量调节【二维dp,枚举】

    2748: [HAOI2012]音量调节 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2010  Solved: 1260[Submit][Statu ...

  7. To the Max 二维dp(一维的变形)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  8. POJ 1661 Help Jimmy(二维DP)

    题目链接:http://poj.org/problem?id=1661 题目大意: 如图包括多个长度和高度各不相同的平台.地面是最低的平台,高度为零,长度无限. Jimmy老鼠在时刻0从高于所有平台的 ...

  9. SGU104 二维dp

    大致题意: n个东西放在(1.2.3...m)个容器中,先放的必需在后方的左边.a[i][j]表示i号物品放在j容器所得 的价值,求最大价值. 几乎是刚刚开始接触动态规划题,开始我这样想 每个东西一件 ...

随机推荐

  1. MM-RGV、AGV 、IGV是什么

    RGV.AGV.IGV是什么 智能化物流仓储设备迅速崛起的时代,RGV.AGV.IGV,这三种看似有血缘关系的智能设备,到底有什么不同呢? RGV RGV即“有轨制导车辆”,又叫有轨穿梭小车,是与地面 ...

  2. 伪AJAX

    <h3>3,伪ajax</h3> <h6>学习iframe(嵌套别人家网站的)</h6> <div> <input id=" ...

  3. zookeeper windows7下集群搭建

    模拟分布式环境!!!  搞了好几天,各种错误!!终于成功了. 环境: windows7 /centos/xsheel    安装了三个虚拟机... 1.下载zookeeper http://archi ...

  4. 尚硅谷redis学习9-发布订阅

    是什么? 图示说明 命令 例子

  5. impdp导入文件失败问题解决(ORA-39001/ORA-39000/ORA-39143)

    测试环境 SuSE11 + ORACLE11gR2 问题现象 执行 impdp导入现场导回的dmp文件,导入失败.错误提示如下 $impdp sysdb/oracle directory=imp_da ...

  6. vscode项目配置 vue-loader-webpack

    使用vsCode进行项目配置 一.准备工作 1.下载Visual Studio Code 下载地址 2.打开vscode,根据自己需求下载相应插件,可以提高工作效率. 点击下角选项(我作了红框标记), ...

  7. java程序发布成exe等

    1.使用工具jartoexe http://www.regexlab.com/zh/jar2exe/free.htm http://www.jar2exe.com/ 2.exe4j.JSmooth等 ...

  8. 8.抽象类、接口和多态.md

    目录 1.抽象类 1.抽象类 2.接口和抽象类的关系 2.1实现上的区别: 22.类和接口的关系: 2.3.Java为什么只能单继承可以多实现: 2.4.接口和接口的关系: 3.多态 2.接口和抽象类 ...

  9. 面图层拓扑检查和错误自动修改—ArcGIS案例学习笔记

    面图层拓扑检查和错误自动修改-ArcGIS案例学习笔记 联系方式:谢老师,135_4855_4328,xiexiaokui#139.com 数据源: gis_ex10\ex01\parcel.shp, ...

  10. spring boot 的热部署插件