前言

《HDFS NameNode内存全景》中,我们从NameNode内部数据结构的视角,对它的内存全景及几个关键数据结构进行了简单解读,并结合实际场景介绍了NameNode可能遇到的问题,还有业界进行横向扩展方面的多种可借鉴解决方案。

事实上,对NameNode实施横向扩展前,会面临常驻内存随数据规模持续增长的情况,为此需要经历不断调整NameNode内存的堆空间大小的过程,期间会遇到几个问题:

  • 当前内存空间预期能够支撑多长时间。
  • 何时调整堆空间以应对数据规模增长。
  • 增加多大堆空间。

另一方面NameNode堆空间又不能无止境增加,到达阈值后(与机型、JVM版本、GC策略等相关)同样会存在潜在问题:

  • 重启时间变长。
  • 潜在的FGC风险。

由此可见,对NameNode内存使用情况的细粒度掌控,可以为优化内存使用或调整内存大小提供更好的决策支持。

本文在前篇《HDFS NameNode内存全景》文章的基础上,针对前面的几个问题,进一步对NameNode核心数据结构的内存使用情况进行详细定量分析,并给出可供参考的内存预估模型。根据分析结果可有针对的优化集群存储资源使用模式,同时利用内存预估模型,可以提前对内存资源进行合理规划,为HDFS的发展提供数据参考依据。

内存分析

NetworkTopology

NameNode通过NetworkTopology维护整个集群的树状拓扑结构,当集群启动过程中,通过机架感知(通常都是外部脚本计算)逐渐建立起整个集群的机架拓扑结构,一般在NameNode的生命周期内不会发生大变化。拓扑结构的叶子节点DatanodeDescriptor是标识DataNode的关键结构,该类继承关系如图1所示。

图1 DatanodeDescriptor继承关系

在64位JVM中,DatanodeDescriptor内存使用情况如图2所示(除特殊说明外,后续对其它数据结构的内存使用情况分析均基于64位JVM)。

图2 DatanodeDescriptor内存使用详解

由于DataNode节点一般会挂载多块不同类型存储单元,如HDD、SSD等,图2中storageMap描述的正是存储介质DatanodeStorageInfo集合,其详细数据结构如图3所示。

图3 DatanodeStorageInfo内存使用详解

除此之外,DatanodeDescriptor还包括一部分动态内存对象,如replicateBlocks、recoverBlocks和invalidateBlocks等与数据块动态调整相关的数据结构,pendingCached、cached和pendingUncached等与集中式缓存相关的数据结构。由于这些数据均属动态的形式临时存在,随时会发生变化,所以这里没有做进一步详细统计(结果存在少许误差)。

根据前面的分析,假设集群中包括2000个DataNode节点,NameNode维护这部分信息需要占用的内存总量:

(64 + 114 + 56 + 109 ∗ 16)∗ 2000 = ~4MB

在树状机架拓扑结构中,除了叶子节点DatanodeDescriptor外,还包括内部节点InnerNode描述集群拓扑结构中机架信息。

图4 NetworkTopology拓扑结构内部节点内存使用详解

对于这部分描述机架信息等节点信息,假设集群包括80个机架和2000个DataNode节点,NameNode维护拓扑结构中内部节点信息需要占用的内存总量:

(44 + 48) ∗ 80 + 8 ∗ 2000 = ~25KB

从上面的分析可以看到,为维护集群的拓扑结构NetworkTopology,当集群规模为2000时,需要的内存空间不超过5MB,按照接近线性增长趋势,即使集群规模接近10000,这部分内存空间~25MB,相比整个NameNode JVM的内存开销微乎其微。

NameSpace

与传统单机文件系统相似,HDFS对文件系统的目录结构也是按照树状结构维护,NameSpace保存的正是整个目录树及目录树上每个目录/文件节点的属性,包括:名称(name),编号(id),所属用户(user),所属组(group),权限(permission),修改时间(mtime),访问时间(atime),子目录/文件(children)等信息。

下图5为Namespace中INode的类图结构,从类图可以看出,文件INodeFile和目录INodeDirectory的继承关系。其中目录在内存中由INodeDirectory对象来表示,并用List children成员列表来描述该目录下的子目录或文件;文件在内存中则由INodeFile来表示,并用BlockInfo[] blocks数组表示该文件由哪些Blocks组成。其它属性由继承关系的各个相应子类成员变量标识。

图5 文件和目录继承关系

目录和文件结构在继承关系中各属性的内存占用情况如图6所示。

图6 目录和文件内存使用详解

除图中提到的属性信息外,一些附加如ACL等非通用属性,没有在统计范围内。在默认场景下,INodeFile和INodeDirectory.withQuotaFeature是相对通用和广泛使用到的两个结构。

根据前面的分析,假设HDFS目录和文件数分别为1亿,Block总量在1亿情况下,整个Namespace在JVM中内存使用情况:

Total(Directory) = (24 + 96 + 44 + 48) ∗ 100M + 8 ∗ num(total children)
Total(Files) = (24 + 96 + 48) ∗ 100M + 8 ∗ num(total blocks)
Total = (24 + 96 + 44 + 48) ∗ 100M + 8 ∗ num(total children) + (24 + 96 + 48) ∗ 100M + 8 ∗ num(total blocks) = ~38GB

关于预估方法的几点说明:

  1. 对目录树结构中所有的Directory均按照默认INodeDirectory.withQuotaFeature结构进行估算,如果集群开启ACL/Snapshotd等特性,需增加这部分内存开销。
  2. 对目录树结构中所有的File按照INodeFile进行估算。
  3. 从整个目录树的父子关系上看,num(total children)就是目录节点数和文件节点数之和。
  4. 部分数据结构中包括了字符串,按照均值长度为8进行预估,实际情况可能会稍大。

Namespace在JVM堆内存空间中常驻,在NameNode的整个生命周期一直在内存存在,同时为保证数据的可靠性,NameNode会定期对其进行Checkpoint,将Namespace物化到外部存储设备。随着数据规模的增加,文件数/目录树也会随之增加,整个Namespace所占用的JVM内存空间也会基本保持线性同步增加。

BlocksMap

HDFS将文件按照一定的大小切成多个Block,为了保证数据可靠性,每个Block对应多个副本,存储在不同DataNode上。NameNode除需要维护Block本身的信息外,还需要维护从Block到DataNode列表的对应关系,用于描述每一个Block副本实际存储的物理位置,BlockManager中BlocksMap结构即用于Block到DataNode列表的映射关系。BlocksMap内部数据结构如图7所示。

图7 BlockInfo继承关系

BlocksMap经过多次优化形成当前结构,最初版本直接使用HashMap解决从Block到BlockInfo的映射。由于在内存使用、碰撞冲突解决和性能等方面存在问题,之后使用重新实现的LightWeightGSet代替HashMap,该数据结构本质上也是利用链表解决碰撞冲突的HashTable,但是在易用性、内存占用和性能等方面表现更好。关于引入LightWeightGSet细节可参考HDFS-1114

与HashMap相比,为了尽可能避免碰撞冲突,BlocksMap在初始化时直接分配整个JVM堆空间的2%作为LightWeightGSet的索引空间,当然2%不是绝对值,如果2%内存空间可承载的索引项超出了Integer.MAX_VALUE/8(注:Object.hashCode()结果是int,对于64位JVM的对象引用占用8Bytes)会将其自动调整到阈值上限。限定JVM堆空间的2%基本上来自经验值,假定对于64位JVM环境,如果提供64GB内存大小,索引项可超过1亿,如果Hash函数适当,基本可以避免碰撞冲突。

BlocksMap的核心功能是通过BlockID快速定位到具体的BlockInfo,关于BlockInfo详细的数据结构如图8所示。BlockInfo继承自Block,除了Block对象中BlockID,numbytes和timestamp信息外,最重要的是该Block物理存储所在的对应DataNode列表信息triplets。

图8 BlocksMap内存使用详解

其中LightWeightGSet对应的内存空间全局唯一。尽管经过LightWeightGSet优化内存占用,但是BlocksMap仍然占用了大量JVM内存空间,假设集群中共1亿Block,NameNode可用内存空间固定大小128GB,则BlocksMap占用内存情况:

16 + 24 + 2% ∗ 128GB +( 40 + 128 )∗ 100M = ~20GB

BlocksMap数据在NameNode整个生命周期内常驻内存,随着数据规模的增加,对应Block数会随之增多,BlocksMap所占用的JVM堆内存空间也会基本保持线性同步增加。

小结

NameNode内存数据结构非常丰富,除了前面详细分析的核心数据结构外,其实还包括如LeaseManager/SnapShotManager/CacheManager等管理的数据,由于内存使用非常有限,或特性未稳定没有开启,或没有通用性,这里都不再展开。

根据前述对NameNode内存的预估,对比Hadoop集群历史实际数据:文件目录总量~140M,数据块总量~160M,NameNode JVM配置72GB,预估内存使用情况:

Namespace:(24 + 96 + 44 + 48) ∗ 70M + 8 ∗ 140M + (24 + 96 + 48) ∗ 70M + 8 ∗ 160M = ~27GB
BlocksMap:16 + 24 + 2% ∗ 72GB +( 40 + 128 )∗ 160M = ~26GB

说明:这里按照目录文件数占比1:1进行了简化,基本与实际情况吻合,且简化对内存预估结果影响非常小。

二者组合结果~53GB,结果与监控数据显示常驻内存~52GB基本相同,符合实际情况。

从前面讨论可以看出,整个NameNode堆内存中,占空间最大的两个结构为Namespace和BlocksMap,当数据规模增加后,巨大的内存占用势必会给JVM内存管理带来挑战,甚至可能制约NameNode服务能力边界。

针对Namespace和BlocksMap的空间占用规模,有两个优化方向:

  • 合并小文件。使用Hive做数据生产时,为避免严重的数据倾斜、人为调小分区粒度等一些特殊原因,可能会在HDFS上写入大量小文件,会给NameNode带来潜在的影响。及时合并小文件,保持稳定的目录文件增长趋势,可有效避免NameNode内存抖动。
  • 适当调整BlockSize。如前述,更少的Block数也可降低内存使用,不过BlockSize调整会间接影响到计算任务,需要进行适当的权衡。

对比其他Java服务,NameNode场景相对特殊,需要对JVM部分默认参数进行适当调整。比如Young/Old空间比例,为避免CMS GC降级到FGC影响服务可用性,适当调整触发CMS GC开始的阈值等等。关于JVM相关参数调整策略的细节建议参考官方使用文档。

这里,笔者根据实践提供几点NameNode内存相关的经验供参考:

  • 根据元数据增长趋势,参考本文前述的内存空间占用预估方法,能够大体得到NameNode常驻内存大小,一般按照常驻内存占内存总量~60%调整JVM内存大小可基本满足需求。
  • 为避免GC出现降级的问题,可将CMSInitiatingOccupancyFraction调整到~70。
  • NameNode重启过程中,尤其是DataNode进行BlockReport过程中,会创建大量临时对象,为避免其晋升到Old区导致频繁GC甚至诱发FGC,可适当调大Young区(-XX:NewRatio)到10~15。

据了解,针对NameNode的使用场景,使用CMS内存回收策略,将HotSpot JVM内存空间调整到180GB,可提供稳定服务。继续上调有可能对JVM内存管理能力带来挑战,尤其是内存回收方面,一旦发生FGC对应用是致命的。这里提到180GB大小并不是绝对值,能否在此基础上继续调大且能够稳定服务不在本文的讨论范围。结合前述的预估方法,当可用JVM内存达180GB时,可管理元数据总量达~700M,基本能够满足中小规模以下集群需求。

总结

本文在《HDFS NameNode内存全景》基础上,对NameNode内存使用占比较高的几个核心数据结构进行了详细的介绍。在此基础上,提供了可供参考的NameNode内存数据空间占用预估模型:

Total = 198 ∗ num(Directory + Files) + 176 ∗ num(blocks) + 2% ∗ size(JVM Memory Size)

通过对NameNode内存使用情况的定量分析,可为HDFS优化和发展规划提供可借鉴的数据参考依据。

参考文献

[1] Apache Hadoop. https://hadoop.apache.org/. 2016.
[2] Apache Issues. https://issues.apache.org/. 2016.
[3] Apache Hadoop Source Code. https://github.com/apache/hadoop/tree/branch-2.4.1/. 2014.
[4] HDFS NameNode内存全景. http://tech.meituan.com/namenode.html. 2016.
[5] Java HotSpot VM Options. http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html.

HDFS NameNode内存详解的更多相关文章

  1. Hadoop:HDFS NameNode内存全景

    原文转自:https://tech.meituan.com/namenode.html 感谢原作者 一.概述 从整个HDFS系统架构上看,NameNode是其中最重要.最复杂也是最容易出现问题的地方, ...

  2. HDFS NameNode内存全景

    一.概述 从整个HDFS系统架构上看,NameNode是其中最重要.最复杂也是最容易出现问题的地方,而且一旦NameNode出现故障,整个Hadoop集群就将处于不可服务的状态,同时随着数据规模和集群 ...

  3. hdfs文件系统架构详解

    hdfs文件系统架构详解 官方hdfs分布式介绍 NameNode *Namenode负责文件系统的namespace以及客户端文件访问 *NameNode负责文件元数据操作,DataNode负责文件 ...

  4. Hadoop(四)HDFS集群详解

    前言 前面几篇简单介绍了什么是大数据和Hadoop,也说了怎么搭建最简单的伪分布式和全分布式的hadoop集群.接下来这篇我详细的分享一下HDFS. HDFS前言: 设计思想:(分而治之)将大文件.大 ...

  5. adoop(四)HDFS集群详解

    阅读目录(Content) 一.HDFS概述 1.1.HDFS概述 1.2.HDFS的概念和特性 1.3.HDFS的局限性 1.4.HDFS保证可靠性的措施 二.HDFS基本概念 2.1.HDFS主从 ...

  6. Java中堆内存和栈内存详解2

    Java中堆内存和栈内存详解   Java把内存分成两种,一种叫做栈内存,一种叫做堆内存 在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配.当在一段代码块中定义一个变量时,ja ...

  7. Linux内存详解

    --Linux内存详解 -----------------2014/05/24 Linux的内存上表现的不像windows那么直观,本文准备详细的介绍一下Linux的内存. 请看这下有linux命令f ...

  8. JVM内存详解-阅读笔记

  9. Oracle内存详解之 Library cache 库缓冲

    Oracle内存详解之 Library cache 库缓冲 2017年11月09日 11:38:39 阅读数:410更多 个人分类: 体系结构 Library cache是Shared pool的一部 ...

随机推荐

  1. 对Java虚拟机理解

    深入理解Java虚拟机 Java技术体系 Java体系分为四个平台 Java card 运行在小内存上的 Java ME 运行在手机上 Java SE 完整Java 核心api JavaEE 支持使用 ...

  2. zoj 2818 Root of the Problem(数学思维题)

    题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2818 题目描述: Given positive integer ...

  3. MySQL5.7+版本一些问题

    今天有一个需求.我要用本地的Java调用远程服务器的MySQL,因为我的MySQL版本为5.7.2,即比较新的版本.网上找的很多都比较旧,故贴此贴. 无密码: 初次安装MySQL可能没有设置密码,网上 ...

  4. C#Redis初识

    前面博客写了nginx负载均衡,大致了解了下nginx,不过这都是2016年的,2017年的计划也列了,重要的是执行,最近在看RabbitMQ和redis,由于今天和小伙伴们一起去聚餐了,回来的比较晚 ...

  5. WPF命令(Command)介绍、命令和数据绑定集成应用

    要开始使用命令,必须做三件事: 一:定义一个命令 二:定义命令的实现 三:为命令创建一个触发器 WPF中命令系统的基础是一个相对简单的ICommand的接口,代码如下: public interfac ...

  6. Commonjs、AMD、CMD

    CommonJS 该规范的核心思想是允许模块通过 require 方法来同步加载所要依赖的其他模块,然后通过 exports 或 module.exports 来导出需要暴露的接口 require(& ...

  7. EF批量操作数据与缓存扩展框架

    前言 在原生的EF框架中,针对批量数据操作的接口有限,EF扩展框架弥补了EF在批量操作时的接口,这些批量操作包括:批量修改.批量查询.批量删除和数据缓存,如果您想在EF中更方便的批量操作数据,这个扩展 ...

  8. JS DOM操作 函数 事件 阻止事件冒泡

    一 函数 1.字符串函数 s.tolowerCase( ):    -- 变小写 s.toupperCase( ):   -- 变大写 s.substr( 2 , 8 ):     -- 截取     ...

  9. C# 函数 递归

    函数:独立完成某项功能的一个个体,有固定功能函数有 高度抽象函数. 作用: 提高代码的重用性 提高功能开发的效率 提高程序代码的可维护性 函数四要素:   输入       输出       函数名  ...

  10. 基于spring boot 2.x 的 spring-cloud-admin 实践

    spring cloud admin 简介 Spring Boot Admin 用于监控基于 Spring Boot 的应用,它是在 Spring Boot Actuator 的基础上提供简洁的可视化 ...