BZOJ原题链接

洛谷原题链接

可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标。

向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示这一位为\(1\)。

向右下角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(-1\),表示这一位为\(1\)。



若不考虑题目中的限制,那么这就相当于从\((0, 0)\)出发,走\(n + m\)步到达\((n + m, n - m)\)。

相当于从\(n + m\)步中选出\(n\)步向右上走,所以方案数为\(C_{n + m} ^ n\)。

然后考虑有限制的情况,题目要求在任意的前\(k\)个字符中,\(1\)的个数不能少于\(0\)的个数,在坐标轴上的意义就是不能走到\(y = -1\)这一条线。

于是我们考虑计算出违规情况的方案数,可以将走到\(y = -1\)这条线之前的路线翻折过来。



由于翻折过来会导致向右上走变成向右下走,向右下走变成向右上走,即\(1\)变成\(0\),\(0\)变成\(1\),所以违规情况就相当于有\(n + 1\)个\(1\),\(m - 1\)个\(0\)组成字符串的数量,方案数为\(C_{n + m} ^ {n + 1}\)。

所以最后的答案就是\(C_{n + m} ^ n - C_{n + m} ^ {n + 1}\),略化简下就是\(\dfrac{(n - m + 1) \times \prod\limits_{i = m + 1} ^ {n + m} i }{(n + 1)!}\)。

求出\((n + 1)!\)的逆元,然后直接全部乘再一起即可,逆元可用费马小定理求。

#include<cstdio>
using namespace std;
const int N = 1e6 + 10;
const int mod = 20100403;
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
int ksm(int x, int y)
{
int s = 1;
for (; y; y >>= 1, x = 1LL * x * x % mod)
if (y & 1)
s = 1LL * s * x % mod;
return s;
}
int main()
{
int i, n, m, s = 1, dv = 1;
n = re();
m = re();
for (i = 2; i <= n + 1; i++)
dv = 1LL * dv * i % mod;
for (i = m + 1; i <= m + n; i++)
s = 1LL * s * i % mod;
printf("%lld", 1LL * s * (n - m + 1) % mod * ksm(dv, mod - 2) % mod);
return 0;
}

BZOJ1856或洛谷1641 [SCOI2010]生成字符串的更多相关文章

  1. 洛谷 1641 [SCOI2010]生成字符串

    题目戳这里 一句话题意 求\(C_{m+n}^{m}\)-\(C_{m+n}^{m-1}\) Solution 巨说这个题目很水 标签居然还有字符串? 但是我还不很会用逆元真的太菜了,还好此题模数P为 ...

  2. 卡特兰数 洛谷P1641 [SCOI2010]生成字符串

    卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...

  3. 洛谷 P1641 [SCOI2010]生成字符串

    洛谷 这题一看就是卡塔兰数. 因为\(cnt[1] \leq cnt[0]\),很显然的卡塔兰嘛! 平时我们推导卡塔兰是用一个边长为n的正方形推的, 相当于从(0,0)点走到(n,n)点,向上走的步数 ...

  4. Luogu 1641[SCOI2010]生成字符串 - 卡特兰数

    Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M < ...

  5. Luogu 1641 [SCOI2010]生成字符串

    结果和dp没有一点关系…… 30分算法:设$f_{i, j}$表示已经选了$i$个并且有$j$个是白色的状态数,转移显然,最后答案就是$f_{n + m, m}$,时间复杂度$O(n^{2})$. 1 ...

  6. [SCOI2010]生成字符串 题解(卡特兰数的扩展)

    [SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...

  7. P1641 [SCOI2010]生成字符串

    P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...

  8. 【解题报告】洛谷 P2571 [SCOI2010]传送带

    [解题报告]洛谷 P2571 [SCOI2010]传送带今天无聊,很久没有做过题目了,但是又不想做什么太难的题目,所以就用洛谷随机跳题,跳到了一道题目,感觉好像不是太难. [CSDN链接](https ...

  9. BZOJ1856 [SCOI2010]生成字符串 【组合数】

    题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求 ...

随机推荐

  1. django中使用mysql数据库的事务

    django中怎么使用mysql数据库的事务   Mysql数据库事务: 在进行后端业务开始操作修改数据库时,可能会涉及到多张表的数据修改,对这些数据的修改应该是一个整体事务,即要么一起成功,要么一起 ...

  2. js固定底部菜单

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  3. BOS物流项目第十二天

    教学计划 1.角色管理 a.  添加角色功能 b.  角色分页查询 2.用户管理 a.  添加用户功能 b.  用户分页查询 3.修改Realm中授权方法(查询数据库) 4.使用ehcache缓存权限 ...

  4. /src/struts.xml

    <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE struts PUBLIC         ...

  5. input 文本框,对中文长度校验

    在项目中,经常会遇到,对文本框进行校验. eg.  要求姓名长度为20,中文为10,只能输入中英文. <input   maxlength="20" type="t ...

  6. vue 模拟下拉树

    // 使用vue 做表格部分其他部分暂不修改 var app = new Vue({ el: "#freightTbl", watch: { //监听表格数据的变化[使用 watc ...

  7. Linux下SVN server 的使用及权限配置

    [Linux下SVN server 的使用及权限配置] 参考:http://www.cnblogs.com/heinoc/p/3805779.html

  8. JMeter学习(十一)WebSerivice测试计划(转载)

    转载自 http://www.cnblogs.com/yangxia-test WebSerivice测试计划的取样器有两种方式:HTTP请求.SOAP/XML-RPC Request. 1. 测试计 ...

  9. linux下安装kafka

    安装条件: 确保zookeeper已经安装成功.zookeeper安装过程见:https://www.cnblogs.com/expiator/p/9853378.html 1.下载kafka 进入A ...

  10. yum更换阿里源

    备份mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 下载新的CentOS-Base.repo ...