【洛谷】P4198 楼房重建
题解
我们转而维护每个点的斜率,显然一个楼房能被看见它就是一个前缀最大值,斜率比较为了节约精度可以用向量替代
我们每个区间维护被看到的楼房的个数,和楼房的最大值,叶子节点在有楼房时,值为1
那么考虑合并两个区间,左节点的所有能被看到的楼房还是能被看到,右边节点能看到的楼房的斜率需要大于左边节点所需要的斜率最大值
为了找到这些我们去右节点的左右区间去找
如果这个值\(P\)大于等于区间左边的最大值,那么这个值要在右边找
如果小于的话,加上右边的大小,即\(tr[u].cnt - tr[u << 1].cnt\),然后递归到左边处理
复杂度\(O(n \log^2 n)\)
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
struct Point {
int64 x,y;
Point(int64 _x = 0,int64 _y = 0) {
x = _x;y = _y;
}
friend Point operator + (const Point &a,const Point &b) {
return Point(a.x + b.x,a.y + b.y);
}
friend Point operator - (const Point &a,const Point &b) {
return Point(a.x - b.x,a.y - b.y);
}
friend int64 operator * (const Point &a,const Point &b) {
return a.x * b.y - a.y * b.x;
}
friend bool operator < (const Point &a,const Point &b) {
return a * b > 0;
}
friend bool operator > (const Point &a,const Point &b) {
return a * b < 0;
}
friend bool operator == (const Point &a,const Point &b) {
return a * b == 0;
}
friend bool operator >= (const Point &a,const Point &b) {
return a > b || a == b;
}
friend bool operator <= (const Point &a,const Point &b) {
return a < b || a == b;
}
};
struct node {
int L,R,cnt;Point P;
}tr[MAXN * 4];
int N,M;
void build(int u,int l,int r) {
tr[u].L = l;tr[u].R = r;tr[u].cnt = 0;
tr[u].P = Point(r,0);
if(l == r) return;
int mid = (l + r) >> 1;
build(u << 1,l,mid);
build(u << 1 | 1,mid + 1,r);
}
int Calc(int u,Point P) {
if(tr[u].L == tr[u].R) return tr[u].P > P;
if(P >= tr[u << 1].P) {
return Calc(u << 1 | 1,P);
}
else {
return Calc(u << 1,P) + tr[u].cnt - tr[u << 1].cnt;
}
}
void Change(int u,int pos,int y) {
if(tr[u].L == tr[u].R) {
tr[u].P = Point(pos,y);
if(!y) tr[u].cnt = 0;
else tr[u].cnt = 1;
return;
}
int mid = (tr[u].L + tr[u].R) >> 1;
if(pos <= mid) Change(u << 1,pos,y);
else Change(u << 1 | 1,pos,y);
tr[u].P = max(tr[u << 1].P,tr[u << 1 | 1].P);
tr[u].cnt = tr[u << 1].cnt + Calc(u << 1 | 1,tr[u << 1].P);
}
void Solve() {
read(N);read(M);
build(1,1,N);
int x,y;
for(int i = 1 ; i <= M ; ++i) {
read(x);read(y);
Change(1,x,y);
out(tr[1].cnt);enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
【洛谷】P4198 楼房重建的更多相关文章
- 洛谷P4198 楼房重建 (分块)
洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...
- 洛谷 P4198 楼房重建 题解
题面 首先你要知道题问的是什么:使用一种数据结构,动态地维护以1为起点地最长上升子序列(把楼房的高度转化成斜率地序列)的长度: 怎么做?线段树! 我们在线段树上维护两个东西:1.这个区间内斜率的最大值 ...
- 洛谷P4198 楼房重建 单调栈+线段树
正解:单调栈+线段树 解题报告: 传送门! 首先考虑不修改的话就是个单调栈板子题昂,这个就是 然后这题的话,,,我怎么记得之前考试好像有次考到了类似的题目昂,,,?反正我总觉着这方法似曾相识的样子,, ...
- 洛谷P4198 楼房重建(线段树)
题意 题目链接 Sol 别问我为什么发两遍 就是为了骗访问量 这个题的线段树做法,,妙的很 首先一个显然的结论:位置\(i\)能被看到当且仅当\(\frac{H_k}{k} < \frac{H_ ...
- 洛谷P4198 楼房重建
题意:给定序列,每次修改一个值,求前缀最大值的个数. 解:线段树经典应用. 每个节点维护最大值和该区间前缀最大值个数. 发现我们不用下传标记,只需要合并区间. 需要实现一个函数int ask([l r ...
- 洛谷 P4198 楼房重建
思路 此题可转化为以下模型 给定序列\(a[1...n]\),支持单点修改,每次求区间单调栈大小 \(n,Q\le 10^5\) 区间单调栈是什么呢?对于一个区间,建立一个栈,首先将第一个元素入栈,从 ...
- 洛谷 P4198 楼房重建 线段树维护单调栈
P4198 楼房重建 题目链接 https://www.luogu.org/problemnew/show/P4198 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上 ...
- P4198 楼房重建
P4198 楼房重建 集中写博客= = 首先把高度变成斜率 然后就比较玄学了,首先用线段树维护一个区间的斜率最大值,和只看这个区间时能看见的楼房个数ans 然后更新时先更新max,再处理神奇的ans ...
- 洛谷P1119-灾后重建-floyd算法
洛谷P1119-灾后重建 题目描述 给出\(B\)地区的村庄数NN,村庄编号从\(0\)到\(N-1\),和所有\(M\)条公路的长度,公路是双向的. 给出第\(i\)个村庄重建完成的时间\(t_i\ ...
- 洛谷 P3905 道路重建
题目描述 从前,在一个王国中,在n个城市间有m条道路连接,而且任意两个城市之间至多有一条道路直接相连.在经过一次严重的战争之后,有d条道路被破坏了.国王想要修复国家的道路系统,现在有两个重要城市A和B ...
随机推荐
- 【题解】 bzoj3105: [cqoi2013]新Nim游戏 (线性基+贪心)
bzoj3105,懒得复制 Solution: 首先你要有一个前置技能:如果每堆石子异或和为\(0\),则先手比输 这题我们怎么做呢,因为我们没人要先取掉几堆,为了赢对方一定会使剩下的异或和为\(0\ ...
- 前端学习 -- Html&Css -- 相对定位 绝对定位 固定定位
相对定位 - 定位指的就是将指定的元素摆放到页面的任意位置,通过定位可以任意的摆放元素. - 通过position属性来设置元素的定位. -可选值: static:默认值,元素没有开启定位: rela ...
- eos源码剖析之controller
controller::block_status,区块状态枚举类,包括: irreversible = 0,该区块已经被当前节点应用,并且被认为是不可逆的.validated = 1,这是由一个有效生 ...
- SQL记录-PLSQL记录
PL/SQL记录 PL/SQL记录就是可以容纳不同类型的数据项的数据结构.记录由不同字段,类似于数据库表的行. 例如,要保留跟踪图书馆中的书籍.可能要跟踪有关每本书下面的属性类似:标题,作者,主题 ...
- 在ajax请求后台时在请求标头RequestHeader加token
情景:为了保证系统数据的安全性,一般前后台之间的数据访问会有授权与验证,这里的Token机制相对于Cookie支持跨域访问,在RESTful API里面,验证一般可以使用POST请求来通过验证,使服务 ...
- 04 uni-app框架学习:禁用顶部原生导航栏
1.在pages.json中配置 比如要首页禁用 就在首页这个选项里 加上这几句代码 2.效果如下
- 「Android 开发」入门笔记
「Android 开发」入门笔记(界面编程篇) ------每日摘要------ DAY-1: 学习笔记: Android应用结构分析 界面编程与视图(View)组件 布局管理器 问题整理: Andr ...
- mybatis查询缓存——(十三)
1. mybatis缓存介绍 如下图,是mybatis一级缓存和二级缓存的区别图解: mybatis提供查询缓存,用于减轻数据压力,提高数据库性能. mybaits提供一级缓存,和二级缓存.
- 基于FPGA(DDS)的正弦波发生器
记录背景:昨晚快下班时,与同事rk聊起怎么用FPGA实现正弦波的输出.我第一反应是利用高频的PWM波去滤波,但感觉这样的波形精度肯定很差:后来想起之前由看过怎么用FPGA产生正弦波的技术,但怎么都想不 ...
- umount /mnt/cdrom
这是因为有程序正在访问这个设备,最简单的办法就是让访问该设备的程序退出以后再umount.可能有时候用户搞不清除究竟是什么程序在访问设备,如果用户不急着umount,则可以用: umount -l / ...