Description

给定n,m,求 模10^9+7的值。

Input

仅一行,两个整数n,m。

Output

仅一行答案。

Sample Input

100000 1000000000

Sample Output

857275582

数据规模:

1<=n<=105,1<=m<=109,本题共4组数据。

Solution

这题还真是要一点函数基础

设 \(S(n,m)=\sum_{i=1}^m\varphi(in)\) ,所以答案就是 \(\sum_{i=1}^nS(i,m)\)

对于一个 \(S(n,m)\) ,寻找它的性质,发现:

  • 当 \(\mu(n)=0\) 时,\(S(n,m)=\prod_ip_i^{a_i-1}S(\prod_ip_i,m)\)
  • 当 \(|\mu(n)|=1\) 时,\(S(n,m)=\sum_{d|n}\varphi(\frac{n}{d})S(d,\lfloor\frac{m}{d}\rfloor)\)

第一个性质很显然吧,类似于线性筛嘛,如果 \(i\%j==0\) ,\(\varphi(ij)=j\times\varphi(i)\)

第二个性质证明如下:

我们试着找出 \(\varphi(in)\) 的式子

设 \(gcd(i,n)=x\) ,同时,\(n=x \times y\) ,由于 \(|\mu(n)|=1\) ,所以 \(gcd(x,y)=1\)

那么,\(\varphi(in)=x\times\varphi(y)\varphi(i)\) ,将 \(x\) 拆成 \(\varphi*1\) 的卷积,那么,\(\varphi(in)=\varphi(i)\sum_{d|x}\varphi(d)\varphi(y)=\varphi(i)\sum_{d|x}\varphi(\frac{x}{d})\varphi(y)\)

因为 \(gcd(x,y)=1\) ,再把 \(\sum\) 外面的 \(\varphi(y)\) 乘进去,变成 \(\varphi(i)\sum_{d|x}\varphi(\frac{xy}{d})\) ,即 \(\varphi(i)\sum_{d|n,d|i}\varphi(\frac{n}{d})\)

那么 \(S(n,m)=\sum_{i=1}^n\varphi(in)=\sum_{i=1}^n\varphi(i)\sum_{d|n,d|i}\varphi(\frac{n}{d})\)

转换枚举方式,枚举 \(n\) 的约数,\(\sum_{d|n}\varphi(\frac{n}{d})\sum_{i=1}^{\lfloor\frac{m}{d}\rfloor}\varphi(id)=\sum_{d|n}\varphi(\frac{n}{d})S(d,\lfloor\frac{m}{d}\rfloor)\)

知道了这两个性质,便直接递归求解就好了

当 \(n=1\) 的时候,用杜教筛求解

复杂度的话我不会求啊,大概是 \(S(n,m)\) 式子中 \(n\) 的取值有 \(O(n)\) 种,\(m\) 的取值有 \(O(\sqrt{m})\) 种,杜教筛 \(O(m^{\frac{3}{4}})\) ,\(d\) 的取值 \(O(\sqrt{n})\)

然后最后复杂度是 \(O(n(\sqrt{n}+\sqrt{m})+m^{\frac{3}{4}})\)

然后 \(n\sqrt{m}\) 跑不满之类的,就可以过了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200000+10,Mod=1e9+7;
int cnt,vis[MAXN],prime[MAXN],mu[MAXN],phi[MAXN],s[MAXN],lst[MAXN];
ll ans;
std::vector<int> V[MAXN];
std::map< std::pair<int,int>,int > M;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void init()
{
memset(vis,1,sizeof(vis));
vis[0]=vis[1]=0;
phi[1]=mu[1]=lst[1]=1;
for(register int i=2;i<MAXN;++i)
{
if(vis[i])
{
prime[++cnt]=i;
mu[i]=-1,phi[i]=i-1,lst[i]=i;
}
for(register int j=1;j<=cnt&&i*prime[j]<MAXN;++j)
{
vis[i*prime[j]]=0;
if(i%prime[j])
{
mu[i*prime[j]]=-mu[i];
phi[i*prime[j]]=phi[i]*phi[prime[j]];
lst[i*prime[j]]=lst[i]*lst[prime[j]];
}
else
{
phi[i*prime[j]]=phi[i]*prime[j];
lst[i*prime[j]]=lst[i];
break;
}
}
}
for(register int i=1;i<MAXN;++i)
{
s[i]=(s[i-1]+phi[i])%Mod;
for(register int j=1;i*j<MAXN;++j)V[i*j].push_back(i);
}
}
inline ll P(int n)
{
if(n<MAXN)return s[n];
std::pair<int,int> pr=std::make_pair(1,n);
if(M.find(pr)!=M.end())return M[pr];
ll res=0;
for(register int i=2;;)
{
if(i>n)break;
int j=n/(n/i);
(res+=1ll*(j-i+1)*P(n/i)%Mod)%=Mod;
i=j+1;
}
return M[pr]=((1ll*(1+n)*n/2)%Mod-res+Mod)%Mod;
}
inline ll S(int n,int m)
{
std::pair<int,int> pr=std::make_pair(n,m);
if(n==1)return P(m);
if(m==0)return 0;
if(M.find(pr)!=M.end())return M[pr];
if(mu[n]==0)return M[pr]=1ll*(n/lst[n])*S(lst[n],m)%Mod;
ll res=0;
for(register int i=0,lt=V[n].size();i<lt;++i)(res+=1ll*phi[n/V[n][i]]*S(V[n][i],m/V[n][i])%Mod)%=Mod;
return M[pr]=res;
}
int main()
{
int n,m;read(n);read(m);init();
for(register int i=1;i<=n;++i)(ans+=S(i,m))%=Mod;
write(ans,'\n');
return 0;
}

【刷题】BZOJ 3512 DZY Loves Math IV的更多相关文章

  1. BZOJ 3512: DZY Loves Math IV [杜教筛]

    3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小 ...

  2. ●BZOJ 3512 DZY Loves Math IV

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3512 题解: $$求ANS=\sum_{i=1}^{N}\sum_{j=1}^{M}\phi ...

  3. bzoj 3512: DZY Loves Math IV

    Description 给定n,m,求 模10^9+7的值. Solution 设 \(S(n,m)\) 表示 \(\sum_{i=1}^{m}\phi(n*i)\) \(Ans=\sum_{i=1} ...

  4. bzoj 3512: DZY Loves Math IV【欧拉函数+莫比乌斯函数+杜教筛】

    参考:http://blog.csdn.net/wzf_2000/article/details/54630931 有这样一个显然的结论:当\( |\mu(n)|==1 \)时,\( \phi(nk) ...

  5. 【BZOJ3512】DZY Loves Math IV(杜教筛)

    [BZOJ3512]DZY Loves Math IV(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\sum_{j=1}^m\varphi(ij)\] 其中\(n\le 10^5,m\l ...

  6. ●BZOJ 3309 DZY Loves Math

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...

  7. BZOJ 3561 DZY Loves Math VI

    BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...

  8. BZOJ 3309: DZY Loves Math

    3309: DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 761  Solved: 401[Submit][Status ...

  9. bzoj 3309 DZY Loves Math 莫比乌斯反演

    DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1303  Solved: 819[Submit][Status][Dis ...

随机推荐

  1. JQuery radio单选框应用

    转载:JQuery判断radio(单选框)是否选中和获取选中值方法总结 一.利用获取选中值判断选中 直接上代码,别忘记引用JQuery包 复制代码 代码如下: < !DOCTYPE html P ...

  2. Ubuntu学习总结-01 安装Ubuntu

    Ubuntu(友帮拓.优般图.乌班图)是一个以桌面应用为主的开源GNU/Linux操作系统,Ubuntu 是基于Debian GNU/Linux,支持x86.amd64(即x64)和ppc架构,由全球 ...

  3. 2017-2018-2 20155203《网络对抗技术》 Exp7:网络欺诈防范

    1.基础问题回答 (1)通常在什么场景下容易受到DNS spoof攻击 连接无线网络,和恶意攻击者处在同一局域网下. (2)在日常生活工作中如何防范以上两攻击方法 首先决不去点击浏览器都认为不安全的网 ...

  4. 20155223 Exp6 信息收集与漏洞扫描

    20155223 Exp6 信息收集与漏洞扫描 本次实验以熟悉信息收集手段与漏洞扫描手段为主. 实践步骤 whois域名查找 在虚拟机Kali的终端输入命令:whois baidu.com,查询百度的 ...

  5. 20155234 exp4 恶意代码分析

    实验4 恶意代码分析 系统运行监控 Schtasks 先建立一个netstat20155234.txt文件,在文件中输入 date /t >> c:\netstat20155234.txt ...

  6. 20155320《网络对抗》Exp2 后门原理与实践

    20155320<网络对抗>Exp2 后门原理与实践 [实验内容] (3.5分) (1)使用netcat获取主机操作Shell,cron启动 (2)使用socat获取主机操作Shell, ...

  7. 20155328 《网络攻防》 实验一:PC平台逆向破解(5)M

    20155328 <网络攻防> 实验一:PC平台逆向破解(5)M 实践目标 实践对象:linux可执行文件pwn1. 正常执行时,main调用foo函数,foo函数会简单回显任何用户输入的 ...

  8. frameset的各个frame之间互相访问的方法

    工作中很少使用到frameset,对其了解也是十分有限,这里在网上找了点资料,摘抄了部分内容. (1)获得html页面上的frame window.frames可以获得本页面上所有frame集合,用法 ...

  9. Security3: 架构和权限

    架构(Schema)是数据库对象(比如,Table,View,存储过程等)的容器,授予用户对Schema访问的权限,就是授予用户对Schema下所有object的访问权限. 一,架构(Schema)是 ...

  10. 利用 jrebel 热部署\远程调试\远程热部署 springboot项目 服务器上的代码

    首先要在eclipse 中启用 启用以后在 resource 中生成了 rebel-remote.xml 然后build,把生成的jar包放到服务器上. 然后用下面的命令启动 java -agentp ...