luogu3778/bzoj4898 商旅 (floyd+分数规划+spfa)
首先floyd求出来每两点间的最短距离,然后再求出来从某点买再到某点卖的最大收益
问题就变成了找到一个和的比值最大的环
所以做分数规划,二分出来那个答案r,把边权变成w[i]-r*l[i],再做spfa判正环就行了
(本来想偷懒用floyd判正环,结果T了)
#include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=,maxm=,maxk=;
const ll inf=1e15; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int w[maxn][maxn];
int sell[maxn][maxk],buy[maxn][maxk];
int N,M,K,cnt[maxn];
ll dis[maxn][maxn],d[maxn][maxn],dd[maxn];
bool inq[maxn];
queue<int> q; bool spfa(int s){
while(!q.empty()) q.pop();
dd[s]=;q.push(s);cnt[s]=;
while(!q.empty()){
int p=q.front();inq[p]=;
// printf("%d %d %d\n",p,cnt[p],dd[p]);
q.pop();
for(int b=;b<=N;b++){
if(d[p][b]==-inf) continue;
if(dd[b]<=dd[p]+d[p][b]){
dd[b]=dd[p]+d[p][b];
if(inq[b]) continue;
if(++cnt[b]>N) return ;
q.push(b);
inq[b]=;
}
}
}return ;
} inline bool judge(ll r){
// printf("%lld:\n",r);
for(int i=;i<=N;i++){
for(int j=;j<=N;j++)
d[i][j]=(dis[i][j]==-)?-inf:w[i][j]-r*dis[i][j];
}
bool re=;
CLR(cnt,);CLR(inq,);
for(int i=;i<=N;i++) dd[i]=-inf;
for(int i=;i<=N&&!re;i++){
if(!cnt[i]) re|=spfa(i);
}
return re;
} int main(){
//freopen("","r",stdin);
int i,j,k;
N=rd(),M=rd(),K=rd();
for(i=;i<=N;i++){
for(j=;j<=K;j++){
buy[i][j]=rd(),sell[i][j]=rd();
}
}
for(i=;i<=N;i++){
for(j=;j<=N;j++){
if(i==j) continue;
for(k=;k<=K;k++){
if(sell[j][k]==-||buy[i][k]==-) continue;
w[i][j]=max(w[i][j],sell[j][k]-buy[i][k]);
}
}
}
CLR(dis,-);
for(i=;i<=M;i++){
int a=rd(),b=rd(),c=rd();
dis[a][b]=c;
}
for(i=;i<=N;i++){
for(j=;j<=N;j++){
if(dis[j][i]==-) continue;
for(k=;k<=N;k++){
if(dis[i][k]==-) continue;
if(dis[j][k]==-||dis[j][k]>dis[j][i]+dis[i][k])
dis[j][k]=dis[j][i]+dis[i][k];
}
}
}
// for(i=1;i<=N;i++) for(j=1;j<=N;j++) printf("%d-%d,%lld,%lld\n",i,j,dis[i][j],w[i][j]); ll l=,r=inf,ans=;
while(l<=r){
int m=l+r>>;
if(judge(m)) ans=m,l=m+;
else r=m-;
}
printf("%lld\n",ans);
return ;
}
luogu3778/bzoj4898 商旅 (floyd+分数规划+spfa)的更多相关文章
- 【bzoj4898】[Apio2017]商旅 Floyd+分数规划+Spfa
题目描述 有n个点.m条边.和k种商品.第$i$个点可以以$B_{ij}$的价格买入商品$j$,并以$S_{ij}$的价格卖出.任何时候只能持有一个商品.求一个环,使得初始不携带商品时以某种交易方式走 ...
- [APIO2017]商旅(floyd+分数规划+SPFA)
题解:首先肯定要跑最短路,而n<=100,所以可以用floyd,然后根据比值,很容易想到二分答案,然后再SPFA跑一遍负环,就能求出解了. #include<bits/stdc++.h&g ...
- 2018.09.09 poj2949Word Rings(01分数规划+spfa判环)
传送门 这题要先巧妙的转化一下. 对于每个字符串,我们把头尾的两个小字符串对应的点连边,边权是这个字符串的长度. 这样最多会出现26*26个点. 这个时候就只用求出边权和跟边数的最大比值了. 这个显然 ...
- Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)
题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...
- POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】
题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total ...
- 【bzoj1486】[HNOI2009]最小圈 分数规划+Spfa
题目描述 样例输入 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 样例输出 3.66666667 题解 分数规划+Spfa判负环 二分答案mid,并将所有边权减去mid,然后再判 ...
- 【bzoj1690】[Usaco2007 Dec]奶牛的旅行 分数规划+Spfa
题目描述 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的城市地图,上面标 ...
- [HNOI2009]最小圈 分数规划 spfa判负环
[HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...
- bzoj 4898: [Apio2017]商旅【Floyd+分数规划+二分】
其实并不会分数规划 因为要最大化 ans=总收益/总路程 ,所以考虑二分答案,找到一条 ans<=总收益/总路程 的回路.先预处理出d(i,j)为(i,j)最短路,w(i,j)为在i买某个物品在 ...
随机推荐
- Kafka 集群部署
kafka是一个分布式消息队列,需要依赖ZooKeeper,请先安装好zk集群 kafka安装包解压 $ -0.9.0.1.tgz $ -0.9.0.1 /usr/kafka $ cd /usr/ka ...
- WPF和WebBrowser JS交互
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.W ...
- MiZ702学习笔记11——如何使用vivado isim仿真
说到vivado的仿真确实是很有意思,不管是ISE还是Quartus都可以自己自动生成测试平台的完整构架,但是vivado不行,所有的测试代码自己写!(我反正是查了好久,都没发现vivado如何自动生 ...
- Qt控件使用汇总
QTableWidget: //tab居中显示 QTabWidget::tab-bar { alignment: center; } //tab边框样式,边框颜色,前景色 QTabBar::tab { ...
- Python基础知识(Basic knowledge)
Python基础知识(Basic knowledge) 1.认识Python&基础环境搭建 2.Python基础(上) 3.Python基础(中) 4.Python基础(下) 5.Python ...
- vue-router单页应用简单示例(三)
用vue-resource向服务器请求数据 我们主要来了解一下以下内容: 模拟服务端返回数据 用vue-resource向服务器请求数据 模拟服务器返回数据 我们用vue-cli创建的项目中,已经 ...
- HTML5 标签实例
html 5 学习1.<p></p> #段落元素定义2.<h1></h1> #标题 h1代表大号的字体.依此变小3.<br /> #实例 代 ...
- Markdown基本使用方法
最近开通了博客,看到网上好多推荐markdown的,而且博客园支持markdown,所以决定学习一下. 百度百科对markdown的介绍: Markdown是一种可以使用普通文本编辑器编写的标记语言, ...
- Python中 list, numpy.array, torch.Tensor 格式相互转化
1.1 list 转 numpy ndarray = np.array(list) 1.2 numpy 转 list list = ndarray.tolist() 2.1 list 转 torch. ...
- 小刘的机器学习---SVM
前言: 这是一篇记录小刘学习机器学习过程的随笔. 正文: 支持向量机(SVM)是一组用于分类, 回归和异常值检测的监督学习方法. 在分类问题中,SVM就是要找到一个同时离各个类别尽可能远的决策边界即最 ...