1. keras.layers.Dense

(Fully Connected Neural NetWork),所实现的运算是output = activation(dot(input, kernel)+bias)

keras.layers.Dense(units,               // 该层的neuron的个数
           activation=None,          // 该层的激活函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)
           use_bias=True,            // 是否添加偏置项
           kernel_initializer='glorot_uniform',    // 权重初始化方法
           bias_initializer='zeros',         // 偏置值初始化方法
           kernel_regularizer=None,         // 权重正则化方化
           bias_regularizer=None,          // 偏置值正则化方法
           activity_regularizer=None,      // Output的正则化方法
           kernel_constraint=None,         // 权重变化限制函数
           bias_constraint=None)         // 偏置值变化限制函数

除了input layer须指定input_dim之外,所有hidden layer和ouput layer的input_dim默认都是上一层的output_dim。

在keras中,数据是以张量的形式表示的,张量的形状称之为shape,表示从最外层向量逐步到达最底层向量的降维解包过程。比如,一个一阶的张量[1,2,3]的shape是(3,);一个二阶的张量[[1,2,3],[4,5,6]]的shape是(2,3);一个三阶的张量[[[1],[2],[3]],[[4],[5],[6]]]的shape是(2,3,1)。

input_shape就是指输入张量的shape。例如,input_dim=784,说明输入是一个784维的向量,这相当于一个一阶的张量,它的shape就是(784,)。因此,input_shape=(784,)。

input_dim = input_shape(input_dim,)

input_dim, input_length = input_shape(input_length, input_dim)

REFERENCE:

https://blog.csdn.net/weixin_42499236/article/details/84624195

https://blog.csdn.net/gjq246/article/details/72638343/

https://blog.csdn.net/x_ym/article/details/77728732

https://www.cnblogs.com/yqtm/p/6924939.html

Keras学习笔记。的更多相关文章

  1. 官网实例详解-目录和实例简介-keras学习笔记四

    官网实例详解-目录和实例简介-keras学习笔记四 2018-06-11 10:36:18 wyx100 阅读数 4193更多 分类专栏: 人工智能 python 深度学习 keras   版权声明: ...

  2. Keras学习笔记——Hello Keras

    最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车.图像识别.物体检测.推荐系统.语音识别.聊天问答等等.因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下 ...

  3. Keras学习笔记

    Keras基于Tensorflow和Theano.作为一个更高级的框架,用其编写网络更加方便.具体流程为根据设想的网络结构,使用函数式模型API逐层构建网络即可,每一层的结构都是一个函数,上一层的输出 ...

  4. Keras学习笔记(完结)

    使用Keras中文文档学习 基本概念 Keras的核心数据结构是模型,也就是一种组织网络层的方式,最主要的是序贯模型(Sequential).创建好一个模型后就可以用add()向里面添加层.模型搭建完 ...

  5. Keras学习笔记1--基本入门

    """ 1.30s上手keras """ #keras的核心数据结构是“模型”,模型是一种组织网络层的方式,keras 的主要模型是Sequ ...

  6. keras 学习笔记:从头开始构建网络处理 mnist

    全文参考 < 基于 python 的深度学习实战> import numpy as np from keras.datasets import mnist from keras.model ...

  7. Keras学习笔记二:保存本地模型和调用本地模型

    使用深度学习模型时当然希望可以保存下训练好的模型,需要的时候直接调用,不再重新训练 一.保存模型到本地 以mnist数据集下的AutoEncoder 去噪为例.添加: file_path=" ...

  8. keras学习笔记2

    1.keras的sequential模型需要知道输入数据的shape,因此,sequential的第一层需要接受一个关于输入数据shape的参数,后面的各个层则可以自动的推导出中间数据的shape,因 ...

  9. keras 学习笔记(二) ——— data_generator

    data_generator 每次输出一个batch,基于keras.utils.Sequence Base object for fitting to a sequence of data, suc ...

随机推荐

  1. Hadoop HBase概念学习系列之HBase里的Zookeeper(二十一)

    这个,很简单,但凡是略懂大数据的,就很清楚,不多说,直接上图.

  2. SQLite简单使用记录

    SQLite,一种轻量级的数据库 想要使用的话首先下载安装包. https://www.sqlite.org/download.html 下载sqlite-netFx20-setup-bundle-x ...

  3. 【CSS】Sass理解

    原文在 https://github.com/zhongxia245/blog , 欢迎 star! Sass理解 时间:2016-09-24 22:56:12 作者:zhongxia 这里就不讲解S ...

  4. Priority Queue

    优先队列 集合性质的数据类型离不开插入删除这两操作,主要区别就在于删除的时候删哪个,像栈删最晚插入的,队列删最早插入的,随机队列就随便删,而优先队列删除当前集合里最大(或最小)的元素.优先队列有很多应 ...

  5. 实现统计 android手机 CPU使用率

    # -*- coding:utf-8 -*- ''' Created on Sep 10, 2018 @author: SaShuangYiBing ''' import subprocess imp ...

  6. luogu P1891 疯狂LCM

    嘟嘟嘟 这题跟上一道题有点像,但是我还是没推出来--菜啊 \[\begin{align*} ans &= \sum_{i = 1} ^ {n} \frac{i * n}{gcd(i, n)} ...

  7. Spring Boot Actuator RCE

    来看一下IDEA如何调试Spring Boot 先在https://github.com/artsploit/actuator-testbed下载源码 如下命令就能通过maven环境启动 mvn in ...

  8. lambda函数详解

    lambda函数的作用就是可以编写内嵌的无名函数,而不必写成独立的函数: 结构:[]为开始,(参数){函数体} 例如: 1. auto lambdaFun1 = [](int a) {std::cou ...

  9. Python2.7-codecs

    codecs 自然语言编码转换模块 模块内的主要方法如下: codecs.encode(obj[, encoding[, errors]]):对obj用encoding编码codecs.decode( ...

  10. Arduino入门笔记(8):利用12864和ADXL345学习重力感应控制

    转载请注明:@小五义 http://www.cnblogs.com/xiaowuyi 欢迎加入讨论群 64770604 一.本次实验所需器材 1.Arduino UNO板 https://item.t ...