附:双曲函数类似于常见的(也叫圆函数的)三角函数。基本双曲函数是双曲正弦"sinh",双曲余弦"cosh",从它们导出双曲正切"tanh"

sigmod函数:

Relu函数:

综合:

@作者:约翰曰不约 
为什么通常Relu比sigmoid和tanh强,有什么不同?
主要是因为它们gradient特性不同。sigmoid和tanh的gradient在饱和区域非常平缓,接近于0,很容易造成vanishing gradient的问题,减缓收敛速度。vanishing gradient在网络层数多的时候尤其明显,是加深网络结构的主要障碍之一。相反,Relu的gradient大多数情况下是常数,有助于解决深层网络的收敛问题。Relu的另一个优势是在生物上的合理性,它是单边的,相比sigmoid和tanh,更符合生物神经元的特征。
而提出sigmoid和tanh,主要是因为它们全程可导。还有表达区间问题,sigmoid和tanh区间是0到1,或着-1到1,在表达上,尤其是输出层的表达上有优势。
 
@作者:crackhopper,
ReLU更容易学习优化。因为其分段线性性质,导致其前传,后传,求导都是分段线性。而传统的sigmoid函数,由于两端饱和,在传播过程中容易丢弃信息:
@作者:Begin Again

第一个问题:为什么引入非线性激励函数?
如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。
正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balabala)。
第二个问题:为什么引入Relu呢?
第一,采用sigmoid等函数,算激活函数时(指数运算),计算量大,反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。
第二,对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失,参见 @Haofeng Li 答案的第三点),从而无法完成深层网络的训练。
第三,Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生(以及一些人的生物解释balabala)。

当然现在也有一些对relu的改进,比如prelu,random relu等,在不同的数据集上会有一些训练速度上或者准确率上的改进,具体的大家可以找相关的paper看。
多加一句,现在主流的做法,会在做完relu之后,加一步batch normalization,尽可能保证每一层网络的输入具有相同的分布[1]。而最新的paper[2],他们在加入bypass connection之后,发现改变batch normalization的位置会有更好的效果。大家有兴趣可以看下。

ReLU为什么比Sigmoid效果好的更多相关文章

  1. 深度学习(十六) ReLU为什么比Sigmoid效果好

    sigmoid: Relu: 为什么通常Relu比sigmoid和tanh强,有什么不同?主要是因为它们gradient特性不同. 1.sigmoid和tanh的gradient在饱和区域非常平缓,接 ...

  2. 神经网络激活函数sigmoid relu tanh 为什么sigmoid 容易梯度消失

    https://blog.csdn.net/danyhgc/article/details/73850546 什么是激活函数 为什么要用 都有什么 sigmoid ,ReLU, softmax 的比较 ...

  3. ReLu(修正线性单元)、sigmoid和tahh的比较

    不多说,直接上干货! 最近,在看论文,提及到这个修正线性单元(Rectified linear unit,ReLU). Deep Sparse Rectifier Neural Networks Re ...

  4. 激活函数Sigmoid、Tanh、ReLu、softplus、softmax

    原文地址:https://www.cnblogs.com/nxf-rabbit75/p/9276412.html 激活函数: 就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端. 常见 ...

  5. 神经网络中的激活函数具体是什么?为什么ReLu要好过于tanh和sigmoid function?(转)

    为什么引入激活函数? 如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层 ...

  6. 神经网络中的激活函数tanh sigmoid RELU softplus softmatx

    所谓激活函数,就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端.常见的激活函数包括Sigmoid.TanHyperbolic(tanh).ReLu. softplus以及softma ...

  7. 神经网络中的激活函数——加入一些非线性的激活函数,整个网络中就引入了非线性部分,sigmoid 和 tanh作为激活函数的话,一定要注意一定要对 input 进行归一话,但是 ReLU 并不需要输入归一化

    1 什么是激活函数? 激活函数,并不是去激活什么,而是指如何把“激活的神经元的特征”通过函数把特征保留并映射出来(保留特征,去除一些数据中是的冗余),这是神经网络能解决非线性问题关键. 目前知道的激活 ...

  8. What are the advantages of ReLU over sigmoid function in deep neural network?

    The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...

  9. ReLu(Rectified Linear Units)激活函数

    论文参考:Deep Sparse Rectifier Neural Networks (很有趣的一篇paper) 起源:传统激活函数.脑神经元激活频率研究.稀疏激活性 传统Sigmoid系激活函数 传 ...

随机推荐

  1. HDU 2665.Kth number 区间第K小

    Kth number Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. gcc产生类型转换告警

    问题背景: 看 https://www.cnblogs.com/sinaxyz/p/4525208.html 这个篇blog时候,发现在应用层代码中,函数 int open_netlink() 中,有 ...

  3. start()方法和run()方法有什么区别?

    通过调用线程类的start()方法来启动一个线程,使线程处于就绪状态,即可以被JVM来调度执行,在调度过程中,JVM通过调用线程类的run()方法来完成实际的业务逻辑,当run()方法结束后,此线程就 ...

  4. linux 常用命令(三)ssh

    linux 常用命令(三)SSH 一.SSH 安装及免密登陆 (1) SSH 安装并配置 CentOS 默认已安装了 SSH client.SSH server,打开终端执行如下命令进行检验 rpm ...

  5. 【转】你知道C#中的Lambda表达式的演化过程吗?

    [转]你知道C#中的Lambda表达式的演化过程吗? 那得从很久很久以前说起了,记得那个时候... 懵懂的记得从前有个叫委托的东西是那么的高深难懂. 委托的使用 例一: 什么是委托? 个人理解:用来传 ...

  6. 兼容ie透明书写

    filter:alpha(opacity=0); opacity:0;filter:alpha(opacity=70); opacity:0.7;

  7. UGUI图集

    Editor->Project Settings 下面有sprite packer的模式.Disabled表示不启用它,Enabled For Builds 表示只有打包的时候才会启用它,Alw ...

  8. 2018.12.08 codeforces 948D. Perfect Security(01trie)

    传送门 01trie板子题. 给出两个数列,允许把第二个数列重新排列. 求使得两个数列每个位置对应的数的异或值和成为最小值的每个位置的异或和. 把第二个数列插入到01trie里面然后对于第一个数列中的 ...

  9. 2018.11.02 洛谷P2661 信息传递(拓扑排序+搜索)

    传送门 按照题意模拟就行了. 先拓扑排序去掉不在环上面的点. 剩下的都是简单环了. 于是都dfsdfsdfs一遍求出最短的环就行. 代码: #include<bits/stdc++.h> ...

  10. Query - noConflict() 方法

    ps:菜鸟教程 如何在页面上同时使用 jQuery 和其他框架? noConflict() 方法会释放对 $ 标识符的控制,这样其他脚本就可以使用它了. 当然,您仍然可以通过全名替代简写的方式来使用 ...