http://www.lydsy.com/JudgeOnline/problem.php?id=1013

设球心(x1,x2,x3……)

已知点的坐标为t[i][j]

那么 对于每个i满足

Σ (t[i][j]-x[j])^2 = Σ (t[0][j]-x[j])^2

化简开就是 2*(t[0][j]-t[i][j])*x[j] = t[0][j]^2-t[i][j]^2

n个方程n个未知数

高斯消元

#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
int n;
double t[],a[][];
void gauss()
{
int r;
double f;
for(int i=;i<n;i++)
{
r=i;
for(int j=i+;j<n;j++)
if(fabs(a[j][i])>fabs(a[r][i])) r=j;
if(r!=i) for(int j=;j<=n;j++) swap(a[r][j],a[i][j]);
for(int k=i+;k<n;k++)
{
f=a[k][i]/a[i][i];
for(int j=i;j<=n;j++) a[k][j]-=f*a[i][j];
}
}
for(int i=n-;i>=;i--)
{
for(int j=i+;j<n;j++) a[i][n]-=a[j][n]*a[i][j];
a[i][n]/=a[i][i];
}
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++) scanf("%lf",&t[i]);
double x;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
scanf("%lf",&x);
a[i][j]=*(t[j]-x);
a[i][n]+=t[j]*t[j]-x*x;
}
gauss();
for(int i=;i<n-;i++) printf("%.3lf ",a[i][n]);
printf("%.3lf",a[n-][n]);
}

1013: [JSOI2008]球形空间产生器sphere

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 6307  Solved: 3266
[Submit][Status][Discuss]

Description

  有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球
面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

  第一行是一个整数n(1<=N=10)。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点
后6位,且其绝对值都不超过20000。

Output

  有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点
后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2
0.0 0.0
-1.0 1.0
1.0 0.0

Sample Output

0.500 1.500

HINT

  提示:给出两个定义:1、 球心:到球面上任意一点距离都相等的点。2、 距离:设两个n为空间上的点A, B

的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 +

… + (an-bn)^2 )

bzoj千题计划104:bzoj1013: [JSOI2008]球形空间产生器sphere的更多相关文章

  1. BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】

    BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...

  2. BZOJ1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4846  Solved: 2525[Subm ...

  3. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  4. BZOJ1013: [JSOI2008]球形空间产生器sphere

    传送门 高斯消元练习. 模板: void Guass(){ int waited; up(i,1,N){ waited=i; up(j,i+1,N)if(fabs(M[j][i])>fabs(M ...

  5. BZOJ1013 [JSOI2008]球形空间产生器sphere[高消]

    数论进度开的好慢啊.我整天做的都是什么鬼题啊. 简单的高消题,用一个式子把另外$n$个有二次项和距离的式子全消掉就行了. #include<iostream> #include<cs ...

  6. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  7. 【bzoj1013】[JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4530  Solved: 2364[Subm ...

  8. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  9. bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Subm ...

随机推荐

  1. 基于.NET Standard的分布式自增ID算法--Snowflake代码实现

    概述 上篇文章介绍了3种常见的Id生成算法,本篇主要介绍如何使用C#实现Snowflake. 基础字段 /// <summary> /// 工作节点Id(长度为5位) /// </s ...

  2. Google Kickstart Round.B C. Diverse Subarray

    这题又是万恶的线段树 maxx[j]存储的是 l = xxx, r = j的时候的答案 我们会让 l 从 1到n 的遍历中,查询线段树的[l, n]中最大的答案 因为query的下界是n,所以单次查询 ...

  3. 团队作业week9

    1. Bug bash ▪ How many bugs is found in your bug bash? 2. Write a blog to talk about your scenario t ...

  4. 《Linux内核分析》第三周学习笔记

    <Linux内核分析>第三周学习笔记 构造一个简单的Linux系统MenuOS 郭垚 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.stud ...

  5. 腾讯云申请的64位ubuntu服务器配置php环境

    腾讯云申请的64位ubuntu服务器配置php环境 一.首先还是安装Lamp组合 Linux+Apache+Mysql+php 直接命令 sudo apt-get install apache2 su ...

  6. VS2013安装及测试

    一.Visual Studio的安装 首先是Visual Studio英文版的安装,安装完成后,为了用的时候方便,我从官网下载Visual Studio 2013的语言包并安装. 二.进行单元测试. ...

  7. Alpha 冲刺五

    团队成员 051601135 岳冠宇 051604103 陈思孝 031602629 刘意晗 031602248 郑智文 031602234 王淇 会议照片 项目燃尽图 项目进展 暂无实质性进展. 项 ...

  8. CentOS下 NFS的简单使用以及windows 关在linux的NFS存储方法

    1. 全部安装的情况下NFS已经安装到服务器上面了,如果没有安装的话 需要使用如下命令进行安装 yum -y install nfs-utils rpcbind 2. 创建需要使用的NFS目录 mkd ...

  9. linux 获取帮助文档

    在linux中遇到命令不知道如何使用,可以用man或info来查看. man -f 与 whatis命令是相同的. man -k 与apropos命令是相同的. 而这两个命令又很类似,都是去搜索,找到 ...

  10. C++ STL 整理

    一.一般介绍 STL(Standard Template Library),即标准模板库,是一个具有工业强度的,高效的C++程序库.它被容纳于C++标准程序库(C++ Standard Library ...