题意

你有一棵 \(n\) 个点的树,每次会随机选择树上的一条边,将两个端点 \(u,v\) 合并,新编号随机为 \(u,v\)。问最后保留的编号分别为 \(1\) 到 \(n\) 的概率。

\(n\leq 50\) 。

分析

  • 考虑枚举钦定一个编号为 \(ans\) 之后以他为根跑一次树dp。

  • 思考一下操作的执行过程。首先,操作连接 \(rt\) 和他的儿子 \(v\) 的边时,必须保留 \(rt\) 的编号,然后合并掉 \(v\) ,可以看成是 \(rt\) 将他的编号传递给了 \(v\) (\(rt\) 变成了一个大点)。那么此时对于 \(v\) 子树内的编号变化就是一个子问题了。

  • 记 \(f_{u,i}\) 表示当 \(rt\) 下放到 \(u\) 时, \(u\) 的子树边还有 \(i\) 条没有合并,所有删边方案最后保留 \(rt\) 的概率和。

    记 \(g_{u,i}\) 表示当 \(rt\) 下放到 \(u\) 的父亲时, \(u\) 的子树边+返祖边还有 \(i\) 条没有合并,所有删边方案最后保留 \(rt\) 的概率和。

  • 考虑合并 \(u\) 的儿子 \(v\) , \(u \rightarrow v\) 这条边可以在 2 个不同的时间段合并。

1.在编号下放到 \(u\) 之后。假设下放到 \(u\) 时 \(v\) 子树内有 \(x\) 条边,那么在删除 \(u \rightarrow v\) 之后 \(v\) 的子树内有 \(\leq x\) 条边,所以 \(g_{v,x}+=0.5*\sum_{i=0}^{min({son}_v-1,x)}f_{v,i}\) ,因为此时保留 \(rt\) 的概率是 \(0.5\) 。

2.在编号下放到 \(u\) 之前。所以下放到 \(u\) 时 \(u\) 和 \(v\) 已经看成是一个点,等价于下放到 \(v\) 。\(u \rightarrow v\) 可以在删除 \(v\) 子树内的 \({son}_v-1-x\) 条边中的任何空隙删除,所以 \(g_{v,x}+=f_{v,x}*({son}_v-x)\) 。

  • 考虑儿子 \(x\) 和 \(y\) 之间的合并,发现他们之间的删边顺序互不影响,容易得到:

\[f_{u,i}=\sum_{a=0}^{{son}_x}\sum_{b=0}^{{son}_y}g_{x,a}*g_{y,b}*\binom{a+b}{a}\binom{{son}_x-a+{son}_y-b}{{son}_x-a}
\]

  • 最后的答案除以 \((n-1)!\) 即可。

  • 总时间复杂度为 \(O(n^4)\)。

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].lst,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
typedef double db;
const int N=54;
int n,edc;
int head[N],son[N];
db f[N][N],fac[N],g[N];
struct edge{
int lst,to;
edge(){}edge(int lst,int to):lst(lst),to(to){}
}e[N*2];
void Add(int a,int b){
e[++edc]=edge(head[a],b),head[a]=edc;
e[++edc]=edge(head[b],a),head[b]=edc;
}
db C(int n,int m){
return fac[n]/fac[m]/fac[n-m];
}
void dfs(int u,int fa){
f[u][0]=1;son[u]=1;
go(u)if(v^fa){
dfs(v,u);int tot=son[u]-1+son[v];
fill(g,g+tot+1,0);
for(int a=son[u]-1;~a;--a)
for(int b=son[v];~b;--b)
g[a+b]+=f[u][a]*f[v][b]*C(a+b,a)*C(tot-a-b,son[v]-b);
son[u]+=son[v];
rep(a,0,son[u]-1) f[u][a]=g[a];
}
if(fa){
fill(g,g+son[u]+1,0);
for(int a=son[u]-1;~a;--a){
g[a]+=f[u][a]*(son[u]-a);
for(int b=a+1;b<=son[u];++b)
g[b]+=f[u][a]*0.5;
}
rep(a,0,son[u]) f[u][a]=g[a];
}
}
int main(){
n=gi();
rep(i,1,n-1) Add(gi(),gi());
fac[0]=1;
rep(i,1,n) fac[i]=fac[i-1]*i;
rep(i,1,n){
memset(f,0,sizeof f);
dfs(i,0);
printf("%.10lf\n",f[i][n-1]/fac[n-1]);
}
return 0;
}

[CF1060F]Shrinking Tree[树dp+组合计数]的更多相关文章

  1. 牛客国庆集训派对Day3 B Tree(树形dp + 组合计数)

    传送门:https://www.nowcoder.com/acm/contest/203/B 思路及参考:https://blog.csdn.net/u013534123/article/detail ...

  2. 3.29省选模拟赛 除法与取模 dp+组合计数

    LINK:除法与取模 鬼题.不过50分很好写.考虑不带除法的时候 其实是一个dp的组合计数. 考虑带除法的时候需要状压一下除法操作. 因为除法操作是不受x的大小影响的 所以要状压这个除法操作. 直接采 ...

  3. HDU 4359——Easy Tree DP?——————【dp+组合计数】

    Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  4. [CF1060F]Shrinking Tree

    description codeforces 给一棵\(n\)个节点的树,每次等概率选择树中剩下边的一条进行缩边,这条边的两个端点有相同的概率被保留,求最后每个点被留下的概率. data range ...

  5. Codeforces 161 D. Distance in Tree (树dp)

    题目链接:http://codeforces.com/problemset/problem/161/D 题意: 给你一棵树,问你有多少对点的距离为k. 思路: dp[i][j]表示离i节点距离为j的点 ...

  6. ZOJ-3380 Patchouli’s Spell Cards DP, 组合计数

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3380 题意:有m种不同的元素,每种元素都有n种不同的相位,现在假 ...

  7. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  8. bzoj 2425 [HAOI2010]计数 dp+组合计数

    [HAOI2010]计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 451  Solved: 289[Submit][Status][Discus ...

  9. URAL1018 Binary Apple Tree(树dp)

    组队赛的时候的一道题,那个时候想了一下感觉dp不怎么好写呀,现在写了出来,交上去过了,但是我觉得我还是应该WA的呀,因为总感觉dp的不对. #pragma warning(disable:4996) ...

随机推荐

  1. 从零自学Java-6.使用循环重复执行操作

    1.使用for循环: 2.使用while循环: 3.使用do-while循环: 4.提早退出循环(break,continue): 5.为循环命名. 程序Nines:显示1-200的整数与9的乘积 p ...

  2. sql求两表的并集、交集、非交集、差集、结果集排序

    create table A( id ,) Not null primary key, name ) not null default(''), ) INSERT INTO [A]([name]) V ...

  3. SQL Server登录方式

    SQL Server登录服务器有两种验证方式,一种是windows身份验证,也就是本机验证,另一种就是SQL Server验证,就是使用账号密码的方式验证. 在使用windows身份验证登录时,直接就 ...

  4. 关于<asp:checkBoxList>控件的对齐方法

    定义和用法 TextAlign 属性用于获取或设置 CheckBoxList 项目的文本的文本对齐方式. 语法 <asp:CheckBoxList TextAlign="align&q ...

  5. Windows DHCP备份还原命令

    DHCP服务器如果要更换,最简单的方法就是命令导入导出   导出netsh dhcp server export e:\dhcp.txt all 导入netsh dhcp server import ...

  6. linux访问Windows共享文件命令

    mount -o username=username,password=password,ip=10.0.0.1 //10.0.0.1/backupscm /home/package/image_vm ...

  7. FinalShell使用---Xshell的良心国产软件

    最近发现了一款同类产品FinalShell,还是一块良心国货.初步体验了一下,确实是良心之作.且免费(通用版),支持国货. FinalShell是一体化的的服务器,网络管理软件,不仅是ssh客户端,还 ...

  8. openlayer3 基础学习一创建&显示地图

    <!doctype html> <html lang="en"> <head> <link rel="stylesheet&qu ...

  9. SDN 第五次上机作业

    1.搭建如下拓扑并连接控制器 2.下发相关流表和组表实现负载均衡 s1: s2: s3: s4: 3.抓包分析验证负载均衡 s4-eth1: s4-eth2: s4-eth3

  10. 2.python数据结构的性能分析

    一.引言 - 现在大家对 大O 算法和不同函数之间的差异有了了解.本节的目标是告诉你 Python 列表和字典操作的 大O 性能.然后我们将做一些基于时间的实验来说明每个数据结构的花销和使用这些数据结 ...