从零开始自己搭建复杂网络(以Tensorflow为例)
从零开始自己搭建复杂网络(以MobileNetV2为例)
tensorflow经过这几年的发展,已经成长为最大的神经网络框架。而mobileNetV2在经过Xception的实践与深度可分离卷积的应用之后,相对成熟和复杂,对于我们进行网络搭建的学习有着很大的帮助。
轻量化卷积神经网络MobileNet论文详解(V1&V2)
那么接下来就让我们开始吧!
import tensorflow as tf
from mobilenet_v2.ops import * def mobilenetv2(inputs, num_classes, is_train=True, reuse=False):
exp = 6 # expansion ratio
with tf.variable_scope('mobilenetv2'):
net = conv2d_block(inputs, 32, 3, 2, is_train, name='conv1_1') # size/2 net = res_block(net, 1, 16, 1, is_train, name='res2_1') net = res_block(net, exp, 24, 2, is_train, name='res3_1') # size/4
net = res_block(net, exp, 24, 1, is_train, name='res3_2') net = res_block(net, exp, 32, 2, is_train, name='res4_1') # size/8
net = res_block(net, exp, 32, 1, is_train, name='res4_2')
net = res_block(net, exp, 32, 1, is_train, name='res4_3') net = res_block(net, exp, 64, 1, is_train, name='res5_1')
net = res_block(net, exp, 64, 1, is_train, name='res5_2')
net = res_block(net, exp, 64, 1, is_train, name='res5_3')
net = res_block(net, exp, 64, 1, is_train, name='res5_4') net = res_block(net, exp, 96, 2, is_train, name='res6_1') # size/16
net = res_block(net, exp, 96, 1, is_train, name='res6_2')
net = res_block(net, exp, 96, 1, is_train, name='res6_3') net = res_block(net, exp, 160, 2, is_train, name='res7_1') # size/32
net = res_block(net, exp, 160, 1, is_train, name='res7_2')
net = res_block(net, exp, 160, 1, is_train, name='res7_3') net = res_block(net, exp, 320, 1, is_train, name='res8_1', shortcut=False) net = pwise_block(net, 1280, is_train, name='conv9_1')
net = global_avg(net)
logits = flatten(conv_1x1(net, num_classes, name='logits')) pred = tf.nn.softmax(logits, name='prob')
return logits, pred
MobileNetV2在第一层使用了一个通道数为3×3的卷积进行处理,之后才转入res_block(残差层),在经过res_block叠加之后,使用pwise_block(主要是1×1的卷积调整通道数),然后使用平均池化层,和一个1×1的卷积,将最后输出变为类数。
接着我们来细讲每一个模块:
首先是第一层卷积模块:
卷积模块由下面两个函数组成
卷积模块由卷积层和批正则化(batch_normalization),以及relu6组成
def conv2d(input_, output_dim, k_h, k_w, d_h, d_w, stddev=0.02, name='conv2d', bias=False):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim],
regularizer=tf.contrib.layers.l2_regularizer(weight_decay),
initializer=tf.truncated_normal_initializer(stddev=stddev))
#truncated_normal_initializer生成截断正态分布的随机数
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME')
if bias:
biases = tf.get_variable('bias', [output_dim], initializer=tf.constant_initializer(0.0))
conv = tf.nn.bias_add(conv, biases) return conv def conv2d_block(input, out_dim, k, s, is_train, name):
with tf.name_scope(name), tf.variable_scope(name):
net = conv2d(input, out_dim, k, k, s, s, name='conv2d')
net = batch_norm(net, train=is_train, name='bn')
net = relu(net)
return net
卷积层首先定义了w(可以把w理解为卷积核,是一个Tensor,w具有[filter_height, filter_width, in_channels, out_channels]这样的形状)(l2正则化之后+初始),然后通过 tf.nn.conv2d来进行卷积操作,之后加上偏置。
relu6和batch_normalization,tensorflow有直接的函数,调用即可。
def relu(x, name='relu6'):
return tf.nn.relu6(x, name) def batch_norm(x, momentum=0.9, epsilon=1e-5, train=True, name='bn'):
return tf.layers.batch_normalization(x,
momentum=momentum,
epsilon=epsilon,
scale=True,
training=train,
name=name)
接着我们要在卷积层后叠加res_block残差模块
def res_block(input, expansion_ratio, output_dim, stride, is_train, name, bias=False, shortcut=True):
with tf.name_scope(name), tf.variable_scope(name):
# pw
bottleneck_dim=round(expansion_ratio*input.get_shape().as_list()[-1])
net = conv_1x1(input, bottleneck_dim, name='pw', bias=bias)
net = batch_norm(net, train=is_train, name='pw_bn')
net = relu(net)
# dw
net = dwise_conv(net, strides=[1, stride, stride, 1], name='dw', bias=bias)
net = batch_norm(net, train=is_train, name='dw_bn')
net = relu(net)
# pw & linear
net = conv_1x1(net, output_dim, name='pw_linear', bias=bias)
net = batch_norm(net, train=is_train, name='pw_linear_bn') # element wise add, only for stride==1
if shortcut and stride == 1:
in_dim=int(input.get_shape().as_list()[-1])
if in_dim != output_dim:
ins=conv_1x1(input, output_dim, name='ex_dim')
net=ins+net
else:
net=input+net return net
残差模块使用倒置残差结构,如下图所示
MobileNetv2架构是基于倒置残差结构(inverted residual structure),原本的残差结构的主分支是有三个卷积,两个逐点卷积通道数较多,而倒置的残差结构刚好相反,中间的卷积通道数(依旧使用深度分离卷积结构)较多,旁边的较小。
每个残差结构由一个1×1的卷积和一个3×3的深度卷积和一个1×1的卷积经过线性变换得到。
bottleneck的维度有扩张系数=6来影响。使用1×1的卷积将输入通道转换为扩张系数×输入维度。
dwise_conv深度卷积代码具体如下:
def dwise_conv(input, k_h=3, k_w=3, channel_multiplier= 1, strides=[1,1,1,1],
padding='SAME', stddev=0.02, name='dwise_conv', bias=False):
with tf.variable_scope(name):
in_channel=input.get_shape().as_list()[-1]
w = tf.get_variable('w', [k_h, k_w, in_channel, channel_multiplier],
regularizer=tf.contrib.layers.l2_regularizer(weight_decay),
initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = tf.nn.depthwise_conv2d(input, w, strides, padding, rate=None,name=None,data_format=None)
if bias:
biases = tf.get_variable('bias', [in_channel*channel_multiplier], initializer=tf.constant_initializer(0.0))
conv = tf.nn.bias_add(conv, biases) return conv
卷积核大小 k_h, k_w, in_channel, 1
1×1的卷积定义如下:
def conv_1x1(input, output_dim, name, bias=False):
with tf.name_scope(name):
return conv2d(input, output_dim, 1,1,1,1, stddev=0.02, name=name, bias=bias)
我们为残差层添加shortcut连接。
# element wise add, only for stride==1
if shortcut and stride == 1:
in_dim=int(input.get_shape().as_list()[-1])
if in_dim != output_dim:
ins=conv_1x1(input, output_dim, name='ex_dim')
net=ins+net
else:
net=input+net
只有当stride=1的时候,才启用shortcut链接。
接着叠加res模块
在最后使用全局平均池化:
def global_avg(x):
with tf.name_scope('global_avg'):
net=tf.layers.average_pooling2d(x, x.get_shape()[1:-1], 1)
return net
我们没有使用全连接层,而是使用了1×1的卷积将维度转换为类数,再将其压平。
tf.contrib.layers.flatten(x)
最后使用softmax分类
pred = tf.nn.softmax(logits, name='prob')
好了,MobilenetV2就搭建成功了。
这种网络的搭建模式可以当成一个模板,将其输入输出定好之后,很容易组装到Estimator中,进行网络的更换,以及后期的微调。
本次我们使用了tf.nn搭建网络,下次我们会去尝试slim和tf.layer搭建网络。
从零开始自己搭建复杂网络(以Tensorflow为例)的更多相关文章
- 从零开始自己搭建复杂网络2(以Tensorflow为例)
从零开始自己搭建复杂网络(以DenseNet为例) DenseNet 是一种具有密集连接的卷积神经网络.在该网络中,任何两层之间都有直接的连接,也就是说,网络每一层的输入都是前面所有层输出的并集, 而 ...
- Hyperledger Fabric手动生成CA证书搭建Fabric网络
之前介绍了使用官方脚本自动化启动一个Fabric网络,并且所有的证书都是通过官方的命令行工具cryptogen直接生成网络中的所有节点的证书.在开发环境可以这么简单进行,但是生成环境下还是需要我们自定 ...
- CentOS6.8环境下搭建yum网络仓库
CentOS6.8环境下搭建yum网络仓库 本文利用ftp服务,在CentOS6.8系统下搭建一个yum仓库,然后用另一台虚拟机访问该仓库.并安装程序包 安装ftp服务 查询ftp服务是否安装 [ro ...
- Tensorflow平台快速搭建:Windows 7+TensorFlow 0.12.0
Tensorflow平台快速搭建:Windows 7+TensorFlow 0.12.0 1.TensorFlow 0.12.0下载 2016年11月29日,距离TensorFlow 宣布开源刚刚过去 ...
- 关于路由器漏洞利用,qemu环境搭建,网络配置的总结
FAT 搭建的坑 1 先按照官方步骤进行,完成后进行如下步骤 2 修改 move /firmadyne into /firmware-analysis-toolkit navigate to the ...
- KVM——以桥接的方式搭建虚拟机网络配置
以桥接的方式搭建虚拟机网络,其优势是可以将网络中的虚拟机看作是与主机同等地位的服务器. 在原本的局域网中有两台主机,一台是win7(IP: 192.168.0.236),一台是CentOS7(IP: ...
- 从零开始搭搭建系统3.1——顶级pom制定
从零开始搭搭建系统3.1——顶级pom制定
- 从零开始Windows环境下安装python+tensorflow
从零开始Windows环境下安装python+tensorflow 2017年07月12日 02:30:47 qq_16257817 阅读数:29173 标签: windowspython机器学习te ...
- 【Hadoop离线基础总结】zookeeper的介绍以及集群环境搭建、网络编程和RPC的简单了解
ZooKeeper的介绍以及集群环境搭建.网络编程和RPC的简单了解 ZooKeeper介绍 概述 ZooKeeper是一个分布式协调服务的开源框架,主要用来解决分布式集群中应用系统的一致性问题.例如 ...
随机推荐
- php多进程pcntl学习(一)
pcntl在windows下无法使用,linux编译php时加上参数--enable-pcntl 即可.第一次使用pcntl模块,遇到了一些坑也慢慢填上了,这里简单记录下. 1. 子进程之间变量无法共 ...
- 深入理解ajax系列第六篇——头部信息
前面的话 每个HTTP请求和响应都会带有相应的头部信息,其中有的对开发人员有用.XHR对象提供了操作头部信息的方法.本文将详细介绍HTTP的头部信息 默认信息 默认情况下,在发送XHR请求的同时,还会 ...
- js中的async await
JavaScript 中的 async/await 是属于比较新的知识,在ES7中被提案在列,然而我们强大的babel粑粑已经对它进行列支持! 如果开发中使用了babel转码,那么就放心大胆的用吧. ...
- MT【185】$\max$的表示
已知$f(x)=x^2+(a-4)x+1+|x^2-ax+1|$的最小值为$\dfrac{1}{2}$,则$a$=______ 提示:$f(x)=\max\{2(x-1)^2,2(a-2)x\}$,从 ...
- 【BZOJ1025】[SCOI2009]游戏(动态规划)
[BZOJ1025][SCOI2009]游戏(动态规划) 题面 BZOJ 洛谷 题解 显然就是一个个的置换,那么所谓的行数就是所有循环的大小的\(lcm+1\). 问题等价于把\(n\)拆分成若干个数 ...
- aws上部署zabbix3.4
三台机器 10.0.0.149 AmazonLinux2.0 zabbix-server zabbix-agent 10.0.1.61 CentOS6.9 zabbix-agent 10.0.1.11 ...
- 前端学习 -- Css -- overflow
子元素默认是存在于父元素的内容区中,理论上讲子元素的最大可以等于父元素内容区大小.如果子元素的大小超过了父元素的内容区,则超过的大小会在父元素以外的位置显示,超出父元素的内容,我们称为溢出的内容.父元 ...
- 日志备份的shell脚本
以前工作中写的日志备份的脚本,现记录一下日志备份脚本代码,以后工作中遇到遇到需要备份或者清理日志的时候可以拿来简单修改一下使用,减少工作量. 把备份脚本添加到Linux定时任务中,可以定时执行. 日志 ...
- linux command ------ source
source FileName 等效于. FileName,注 . 和 FileName 有空格 source命令也称为“点命令”,也就是一个点符号(.),作用是在当前bash环境下读取并执行File ...
- GUI起头
package com.lovo.frame; import java.awt.Color;import java.awt.Container;import java.awt.Font;import ...