Given an array A, partition it into two (contiguous) subarrays left and right so that:

  • Every element in left is less than or equal to every element in right.
  • left and right are non-empty.
  • left has the smallest possible size.

Return the length of left after such a partitioning.  It is guaranteed that such a partitioning exists.

Example 1:

Input: [5,0,3,8,6]
Output: 3
Explanation: left = [5,0,3], right = [8,6]

Example 2:

Input: [1,1,1,0,6,12]
Output: 4
Explanation: left = [1,1,1,0], right = [6,12]

Note:

  1. 2 <= A.length <= 30000
  2. 0 <= A[i] <= 10^6
  3. It is guaranteed there is at least one way to partition A as described.

Idea 1. max(nums[0]... nums[i]) <= min(nums[i+1],..nums[n-1]), build maxArray from left, minArray from right

Time comlexity: T(n)

Space complexity: T(n)

using index:

 class Solution {
public int partitionDisjoint(int[] A) {
int[] maxIndex = new int[A.length];
for(int i = 1; i < A.length; ++i) {
if(A[i] > A[maxIndex[i-1]]) {
maxIndex[i] = i;
}
else {
maxIndex[i] = maxIndex[i-1];
}
} int[] minIndex = new int[A.length];
minIndex[A.length-1] = A.length-1;
for(int i = A.length-2; i >= 0; --i) {
if(A[i] < A[minIndex[i+1]]) {
minIndex[i] = i;
}
else {
minIndex[i] = minIndex[i+1];
}
} for(int i = 0; i < A.length-1; ++i) {
if(A[maxIndex[i]] <= A[minIndex[i+1]]) {
return i + 1;
}
} return 0;
}
}

No need to use index

class Solution {
public int partitionDisjoint(int[] A) {
int[] maxFromLeft = new int[A.length];
maxFromLeft[0] = A[0];
for(int i = 1; i < A.length; ++i) {
maxFromLeft[i] = Math.max(maxFromLeft[i-1], A[i]);
} int[] minFromRight = new int[A.length];
minFromRight[A.length-1] = A[A.length-1];
for(int i = A.length-2; i >= 0; --i) {
minFromRight[i] = Math.min(minFromRight[i+1], A[i]);
} for(int i = 0; i < A.length-1; ++i) {
if(maxFromLeft[i] <= minFromRight[i+1]) {
return i + 1;
}
} return 0;
}
}

Idea 2. 从讨论里看到的妙解,只需要保持2个变量,localMax记录有效partition里的最大值, maxSoFar记录遍历至今的最大值,nums[0]...nums[paritionIndex] (localMax) | [nums[partitonIndex]...nums[i-1]| (maxSoFar),  遍历到一个数nums[i],

paritionIndex 不变 if nums[i] >= localMax

paritionIndex = i, 需要包括nums[i], localMax也需要更新至maxSoFar

Time complexity: O(n)

Space complexity: O(1)

 class Solution {
public int partitionDisjoint(int[] A) {
int localMax = A[0];
int maxSoFar = A[0];
int partitionIndex = 0;
for(int i = 1; i < A.length; ++i) {
if(A[i] < localMax) {
partitionIndex = i;
localMax = maxSoFar;
}
maxSoFar = Math.max(maxSoFar, A[i]);
} return partitionIndex + 1;
}
}

Partition Array into Disjoint Intervals LT915的更多相关文章

  1. 【LeetCode】915. Partition Array into Disjoint Intervals 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/partitio ...

  2. [Swift]LeetCode915.将分区数组分成不相交的间隔 | Partition Array into Disjoint Intervals

    Given an array A, partition it into two (contiguous) subarrays left and right so that: Every element ...

  3. [LeetCode] 915. Partition Array into Disjoint Intervals 分割数组为不相交的区间

    Given an array A, partition it into two (contiguous) subarrays left and right so that: Every element ...

  4. 【leetcode】915. Partition Array into Disjoint Intervals

    题目如下: 解题思路:题目要求的是在数组中找到一个下标最小的index,使得index左边(包括自己)子序列的最大值小于或者等于右边序列的最小值.那么我们可以先把数组从最左边开始到数组最右边所有子序列 ...

  5. Partition Array into Disjoint Intervals

    2020-02-10 22:16:50 问题描述: 问题求解: 解法一:MultiSet O(nlog) 看了下数据规模,第一个想到的是multiset,肯定可以ac的,就直接敲了出来. public ...

  6. [leetcode-915-Partition Array into Disjoint Intervals]

    Given an array A, partition it into two (contiguous) subarrays left and right so that: Every element ...

  7. Max coverage disjoint intervals

    Assume you have k<=10^5 intervals [a_i, b_i] \in [1,10^18] (some of them may overlap), and you ne ...

  8. [LeetCode] Data Stream as Disjoint Intervals 分离区间的数据流

    Given a data stream input of non-negative integers a1, a2, ..., an, ..., summarize the numbers seen ...

  9. Leetcode: Data Stream as Disjoint Intervals && Summary of TreeMap

    Given a data stream input of non-negative integers a1, a2, ..., an, ..., summarize the numbers seen ...

随机推荐

  1. tomcat 启动报错org.hibernate.cfg.annotations.SimpleValueBinder.setType

    url: https://blog.csdn.net/zhx_0323/article/details/78844323 # A fatal error has been detected by th ...

  2. day22 面向对象基础

    1.什么是面向过程 在介绍面向对象之前,要先明确面向过程 在这之前我们所写的任何代码都是面向过程的 什么是面向过程? 是一种编程思想 面对 朝向 在编写代码时,要时刻想着过程这两个字 过程指的是什么? ...

  3. shell重定向命令执行顺序

    重定向内容介绍 一条shell命令的执行包含三个文件描述符:标准输入(键盘等) stdin 0,标准正确输出(屏幕等) stdout 1,标准错误输出(屏幕等)stderr 2   通过重定向可以指定 ...

  4. oracle中sequence(自增序号)的用法

    转载:https://www.cnblogs.com/liuzy2014/p/5794928.html 在oracle中sequence就是序号,每次取的时候它会自动增加.sequence与表没有关系 ...

  5. new usercontrol

    http://www.codeproject.com/Articles/12421/The-Grouper-A-Custom-Groupbox-Control

  6. TabError的解决方法

    问题:Python文件运行时报TabError: inconsistent use of tabs and spaces in indentation 原因:说明Python文件中混有Tab和Spac ...

  7. javaWEB登录ajax传值

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  8. 188. Best Time to Buy and Sell Stock IV (Array; DP)

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  9. 再谈AR中的图像识别算法

    之前在<浅谈移动平台创新玩法>简单的猜测了easyar中使用的图像识别算法,基于图片指纹的哈希算法的图片检索 .后再阿里引商大神的指点下,意识到图片检测只适用于静态图片的识别,只能做AR脱 ...

  10. AtCoder Regular Contest 092 C - 2D Plane 2N Points(二分图匹配)

    Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...