SciPy库的optimize模块主要用于执行各种优化任务。
优化是寻找特定函数的最小值或最大值的过程,通常用于机器学习、数据分析、工程和其他领域。

scipy.optimize提供了多种优化算法,包括梯度下降法、牛顿法、最小二乘法等,可以解决各种复杂的优化问题。
该模块还包含一些特定的函数,用于解决某些特定类型的优化问题,如多维非线性优化、约束优化、最小二乘问题等。
此外,scipy.optimize还提供了一些工具,如多线程支持、边界条件处理、数值稳定性措施等,以提高优化的效率和准确性。

1. 主要功能

最优化是数学学科中的一个重要研究领域,optimize模块包含的各类函数能够帮助我们节省大量的计算时间和精力。

类别 说明
优化 包含标量函数优化,局部优化,全局优化等各类方法
最小二乘法和曲线拟合 包含求解最小二乘法问题,各种拟合曲线的方法
求根 包含多种求根的方法,比如布伦特方法,牛顿-拉夫森方法等10来种求根方法
线性规划 内置多种线性规划算法以及混合整数线性规划计算等
分配问题 解决线性和分配问题,包括二次分配和图匹配问题的近似解等
工具函数 包含一些通用的计算方法,比如有限差分近似,海森近似,线搜索等计算函数
遗留函数 即将被淘汰的一些函数,不建议再继续使用

下面通过曲线拟合非线性方程组求解两个示例演示optimize模块的使用。

2. 曲线拟合示例

所谓曲线拟合,其实就是找到一个函数,能够尽可能的经过或接近一系列离散的点。
然后就可以用这个函数来预测离散点的变化趋势。

2.1. 最小二乘法

optimize模块的最小二乘法拟合曲线需要定义一个目标函数和一个残差函数
最小二乘法通过迭代寻找目标函数中参数的最优值,
残差函数是用来计算目标函数的返回值实际值之间的误差的。

首先,加载需要拟合的离散数据。

import pandas as pd

data = pd.read_csv("d:/share/data/A0A01.csv")
data = data[data["zb"] == "A0A0101"]
data = data.sort_values("sj")
data.head()


数据来源:https://databook.top/nation/A0A (其中的A0A01.csv

然后,依据其中1978年~2022年居民人均可支配收入绘制散点图。

from matplotlib.ticker import MultipleLocator
import matplotlib.pyplot as plt ax = plt.subplot()
ax.scatter(data["sjCN"], data["value"], marker='*', color='r')
ax.xaxis.set_major_locator(MultipleLocator(4))
ax.set_title("居民人均可支配收入(元)") plt.xticks(rotation=45)
plt.show()

最后,用optimize模块提供的最小二乘法拟合居民人均可支配收入的变化曲线。

from scipy.optimize import least_squares

# 目标函数
def target_func(p, x):
return p[0]*np.exp(p[1]*x) + p[2] # 残差函数
def residual(p, x, dy):
return target_func(p, x) - dy p0 = [1, 1, 0]
x = range(len(data))
y = data["value"]
# 最小二乘法迭代目标函数的参数
result = least_squares(residual, p0, args=(x, y)) ax = plt.subplot()
ax.xaxis.set_major_locator(MultipleLocator(4))
ax.set_title("居民人均可支配收入(元)") ax.scatter(data["sjCN"], data["value"], marker='*', color='r')
# 这里的result.x就是迭代后的最优参数
ax.plot(x, target_func(result.x, x), color='g') plt.xticks(rotation=45)
plt.show()


图中绿色的曲线就是拟合的曲线,根据拟合出的曲线和目标函数,
就可以预测以后的居民人均可支配收入的变化情况。

2.2. curve_fit方法

最小二乘法需要定义目标函数残差函数,使用起来有些繁琐,optimize模块中还提供了一个curve_fit函数。
可以简化曲线拟合的过程。

from scipy.optimize import curve_fit

# 目标函数
def curve_fit_func(x, p0, p1, p2):
return p0*np.exp(p1*x) + p2 # fitp 就是计算出的目标函数的最优参数
fitp, _ = curve_fit(curve_fit_func, x, y, [1, 1, 0]) ax = plt.subplot()
ax.xaxis.set_major_locator(MultipleLocator(4))
ax.set_title("居民人均可支配收入(元)") ax.scatter(data["sjCN"], data["value"], marker='*', color='r')
ax.plot(x, curve_fit_func(x, *fitp), color='b') plt.xticks(rotation=45)
plt.show()


蓝色的线就是拟合曲线,拟合结果和使用最小二乘法拟合出的是一样的,只是代码可以简化一些。

3. 非线性方程组求解示例

众所周知,手工求解非线性方程是非常困难的,如果经常遇到求解非线性方程的情况,optimize模块绝对能成为你的一个称手工具。

3.1. 非线性方程

使用optimize模块求解非线性方程非常简单。
比如方程:\(2^x+sin(x)-x^3=0\)

from scipy.optimize import root

f = lambda x: 2**x + np.sin(x) - x**3

result = root(f, [1, 1], method='hybr') 

# result.x 是方程的解
result.x
# 运行结果:
array([1.58829918, 1.58829918])

实际使用时,将变量f对应的方程换成你的方程即可。
注意,求解方程的 root 方法的参数method,这个参数支持多种求解方程的方法,可以根据方程的特点选择不同的method

支持的method列表可参考官方文档:https://docs.scipy.org/doc/scipy/reference/optimize.html#multidimensional

3.2. 非线性方程组

对于方程组,求解的方法如下:
比如方程组:\(\begin{cases}
\begin{align*}
x^2 +y-3 & =0 \\
(x-2)^2+y-1 & =0
\end{align*}
\end{cases}\)

fs = lambda x: np.array(
[
x[0] ** 2 + x[1] - 3,
(x[0] - 2) ** 2 + x[1] - 1,
]
) result = root(fs, [1, 1], method="hybr")
result.x
# 运行结果:
array([1.5 , 0.75])

方程组中方程个数多的话,直接添加到变量fs的数组中即可。

4. 总结

总的来说,scipy.optimize是一个强大且易用的优化工具箱,用于解决各种复杂的优化问题。
它对于需要优化算法的许多科学和工程领域都具有重要价值。
通过使用这个模块,用户可以节省大量时间和精力,同时还能保证优化的质量和准确性。

【scipy 基础】--最优化的更多相关文章

  1. SciPy 基础功能

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  2. SciPy - 科学计算库(上)

    SciPy - 科学计算库(上) 一.实验说明 SciPy 库建立在 Numpy 库之上,提供了大量科学算法,主要包括这些主题: 特殊函数 (scipy.special) 积分 (scipy.inte ...

  3. 003 Scipy库简介

    参考文档补充原本的文档: https://www.cnblogs.com/mrchige/p/6504324.html 一:原本的简单介绍 1.Scipy库 Scipy库是基于python生态的一款开 ...

  4. python-数据处理的包Numpy,scipy,pandas,matplotlib

    一,NumPy包(numeric python,数值计算) 该包主要包含了存储单一数据类型的ndarry对象的多维数组和处理数组能力的函数ufunc对象.是其它包数据类型的基础.只能处理简单的数据分析 ...

  5. SciPy 信号处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  6. SciPy 统计

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  7. SciPy 线性代数

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  8. SciPy 图像处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  9. SciPy 优化

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  10. SciPy 积分

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

随机推荐

  1. 用 Tensorflow.js 做了一个动漫分类的功能(二)

    前言: 前面已经通过采集拿到了图片,并且也手动对图片做了标注.接下来就要通过 Tensorflow.js 基于 mobileNet 训练模型,最后就可以实现在采集中对图片进行自动分类了. 这种功能在应 ...

  2. ceph分布式存储软件pgs inconsistent

    Ceph是一个开源的分布式存储系统,它提供了高性能.高可靠性以及高扩展性.Ceph的设计理念是基于对象存储模型,通过将数据分割成多个对象并存储在不同的节点上,实现数据的分布式存储和访问. Ceph的核 ...

  3. MindSponge分子动力学模拟——定义一个分子系统(2023.08)

    技术背景 在前面两篇文章中,我们分别介绍了分子动力学模拟软件MindSponge的软件架构和安装与使用教程.这里我们进入到实用化阶段,假定大家都已经在本地部署好了基于MindSpore的MindSpo ...

  4. ArcMap中矢量数据修改标注Label的方法

      本文介绍在ArcMap软件中,修改图层标签(Label)所显示字段与具体显示内容的方法.   在之前的文章中,我们看到了ArcMap中修改图层标签的重要性:可是,如何自定义图层的标签内容呢?    ...

  5. Hadoop环境安装与配置

    1.基础操作系统环境安装(略) 2.JDK的安装与配置 当前各大数据软件如Hadoop等,仍然停留在Java 8上,在本实验选用的是Java 8.在自己的Linux系统中,jdk可以使用如下命令进行一 ...

  6. 《Python魔法大冒险》008 石像怪的挑战:运算符之旅

    小鱼和魔法师继续深入魔法森林.不久,他们来到了一个巨大的魔法石圈旁边.石圈中心有一个闪闪发光的魔法水晶,周围则是一些神秘的符号.但令人意外的是,水晶的旁边还有一个巨大的石像怪,它的眼睛散发着红色的光芒 ...

  7. 解读Redis常见命令

    Redis数据结构介绍 Redis是一个key-value的数据库,key一般是String类型,不过value的类型多种多样: 贴心小建议:命令不要死记,学会查询就好啦 Redis为了方便我们学习, ...

  8. WPF动画入门教程

    Windows Presentation Foundation (WPF)是一种用于创建Windows客户端应用程序的UI框架.它让我们能够创建丰富的图形界面,包括各种各样的动画效果.接下来,我们将介 ...

  9. MySQL 表分区简介

    MySQL表分区是一种数据库管理技术,用于将大型表拆分成更小.更可管理的分区(子表).每个分区可以独立进行维护.备份和查询,从而提高数据库性能和管理效率.以下是详细介绍MySQL表分区的步骤和注意事项 ...

  10. .NET应用如何防止被反编译

    前言 前段时间分享了两篇关于.NET反编译相关的文章,然后文章留言区就有小伙伴提问:如何防止被反编译?因此本篇文章我们就来讲讲.NET应用如何防止被反编译..NET反编译相关的文章可以看如下文章: 4 ...