It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.
Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).
Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.
Input
* Line 1: Two space separated integers: T and W
* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.
Output
* Line 1: The maximum number of apples Bessie can catch without walking more than W times.
Sample Input
7 2
2
1
1
2
2
1
1
Sample Output
6
Hint

INPUT DETAILS:
Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.
OUTPUT DETAILS:
Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.

仍然是道很经典的动态规划,比起之前的手足无措,这题有了不少的思路,但是由于对状态的定义不太好导致牵连着对状态间的转移也变得模糊起来。

开始是把dp[i][j]定义为第i分钟时,可移动次数还有j次时得到的苹果数量,参考别人博客后发现自己这样的定义并不好。

老规矩,首先定义状态:dp[i][j]表示在第i分钟时,已经移动了j次后得到的苹果数量

接着来看状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]) ,然后判断当前是否在第i分钟掉苹果的那颗树下,是的话,dp[i][j]++

解释(以下提供几种描述):

1.对于第i秒移动j次的状态,可以由两种前驱状态转移得来,一种是i-1秒时就已经移动了j次,然后第i秒就不移动了,另一种是i-1秒移动了j-1次,然后她还可以再移动一次得到移动j次。

2.第i分钟能得到的苹果数量,等于在第i-1分钟时,在树1和树2下得到苹果的最大值(j为偶数则在树1下面,奇数则在树2下面)

3.在第i分钟奶牛到某棵树下有两种状态:1.从另一棵树走过来(dp[i-1][j-1])    2.本来就呆在这棵树下(dp[i-1][j])

由于移动偶数次可以回到树1,移动奇数次可以回到树2,移动j次时,若j%2+1==a[i]就表明当前位置恰好有苹果落下。

最后须注意下初始化与边界计算

附上AC代码:

#include <cstdio>
#include <algorithm>
using namespace std; const int maxn = 1005; int a[maxn], dp[maxn][40]; int main()
{
int t, w;
while(~scanf("%d%d", &t, &w)) {
for(int i = 1; i <= t; i++)
scanf("%d", &a[i]);
if(a[1] == 1) {
dp[1][0] = 1, dp[1][1] = 0;
}
else {
dp[1][0] = 0, dp[1][1] = 1;
}
for(int i = 2; i <= t; i++) {
for(int j = 0; j <= w; j++) {
if(j == 0) dp[i][j] = dp[i-1][j] + a[i]%2;
else {
dp[i][j] = max(dp[i-1][j], dp[i-1][j-1]);
if(j%2+1 == a[i]) dp[i][j]++;
}
}
} int ans = 0;
for(int i = 0; i <= w; i++)
ans = max(ans, dp[t][i]);
printf("%d\n", ans);
} return 0;
}

刚发现有按照我那种思路来的,但是明天要考试了,得看下C语言准备下,先放上博客地址,回头再看

https://www.cnblogs.com/Philip-Tell-Truth/p/4815021.html

POJ-2385 Apple Catching(基础dp)的更多相关文章

  1. poj 2385 Apple Catching 基础dp

    Apple Catching   Description It is a little known fact that cows love apples. Farmer John has two ap ...

  2. POJ 2385 Apple Catching【DP】

    题意:2棵苹果树在T分钟内每分钟随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果.思路:不妨按时间来思考,一给定时刻i,转移次数已知为j, 则它只 ...

  3. POJ 2385 Apple Catching ( 经典DP )

    题意 : 有两颗苹果树,在 1~T 的时间内会有两颗中的其中一颗落下一颗苹果,一头奶牛想要获取最多的苹果,但是它能够在树间转移的次数为 W 且奶牛一开始是在第一颗树下,请编程算出最多的奶牛获得的苹果数 ...

  4. POJ - 2385 Apple Catching (dp)

    题意:有两棵树,标号为1和2,在Tmin内,每分钟都会有一个苹果从其中一棵树上落下,问最多移动M次的情况下(该人可瞬间移动),最多能吃到多少苹果.假设该人一开始在标号为1的树下. 分析: 1.dp[x ...

  5. 【POJ】2385 Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13447   Accepted: 6549 D ...

  6. poj 2385 Apple Catching(dp)

    Description It and ) in his field, each full of apples. Bessie cannot reach the apples when they are ...

  7. poj 2385 Apple Catching(记录结果再利用的动态规划)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 有两颗苹果树,在每一时刻只有其中一棵苹果树会掉苹果,而Bessie可以在很短的时 ...

  8. POJ 2385 Apple Catching(01背包)

    01背包的基础上增加一个维度表示当前在的树的哪一边. #include<cstdio> #include<iostream> #include<string> #i ...

  9. POJ 2385 Apple Catching

    比起之前一直在刷的背包题,这道题可以算是最纯粹的dp了,写下简单题解. 题意是说cows在1树和2树下来回移动取苹果,有移动次数限制,问最后能拿到的最多苹果数,含有最优子结构性质,大致的状态转移也不难 ...

  10. 动态规划:POJ No 2385 Apple Catching

    #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> ...

随机推荐

  1. [oeasy]python0095_乔布斯求职_雅达利_atari_breakout_打砖块_布什内尔_游戏机_Jobs

    编码进化 回忆上次内容 上次 我们回顾了 电子游戏的历史 从 电子游戏鼻祖 双人网球 到 视频游戏 PingPong 再到 街机游戏 Pong 雅达利 公司 来了 嬉皮士 捣乱? 布什内尔 会如何 应 ...

  2. 【漏洞分析】Li.Fi攻击事件分析:缺乏关键参数检查的钻石协议

    背景信息 2024 年 7 月 16日,Li.Fi 协议遭受黑客攻击,漏洞成因是钻石协议中 diamond 合约新添加的 facet 合约没有对参数进行检查,导致 call 函数任意执行.且 diam ...

  3. c++17

    std::variant<std::string,int,float>://作为联合体 using va = std::variant<std::string, int, float ...

  4. Linux 中 Crontab 执行时的环境变量问题(allure命令不执行)

    前几天做了UI自动化脚本部署linux服务器,但是放下脚本的allure命令不执行(生成allure报告和启动allure服务的命令不执行),然后就各种找问题,一开始怀疑是allure的环境变量问题, ...

  5. Jmeter函数助手20-eval

    eval函数用于执行变量名.嵌套函数,允许在变量中的字符串中插入变量和函数引用 包含变量和函数引用的文本:填入变量名称或者函数或者字符,可以只填一种也可以组合都填入 1.eval函数填入的是变量名时则 ...

  6. 【Kotlin】官网学习笔记

    0.IDEA环境设置: 1.基础语法 BasicSyntax 地址:https://kotlinlang.org/docs/basic-syntax.html 一.方法与变量 可以直接编写main方法 ...

  7. 【Java】将枚举类转换为Redis字典缓存

    字典翻译框架实现看这篇: https://www.cnblogs.com/mindzone/p/16890632.html 枚举的特性 首先是枚举的一些特性: 1.枚举实例直接在枚举类中声明 2.重载 ...

  8. pve 安装配置问题集锦

    官网:https://www.proxmox.com/en/ 下载:https://www.proxmox.com/en/downloads 安装:https://pve.proxmox.com/wi ...

  9. 人形机器人(humanoid)的摔倒实验/撞击实验

    motivation: 人形机器人的实体比较昂贵,但是实验过程中机器人的摔倒和撞击时十分常见的事情,这就会导致机器人的元器件被损坏,造成较大的经济损失,为此我们在设计机器人的机械结构和电子元器件布局时 ...

  10. 是忧是喜?——微软撑腰,奥特曼重回OpenAI任CEO —— 争论点:AI发展规范化是否会损害美国在AI领域的领先地位 —— AI发展是否需要规范化

    参考: https://mbd.baidu.com/newspage/data/landingsuper?context=%7B%22nid%22%3A%22news_1027953478745543 ...