训练模型官方示例

MNIST数据下载地址: http://github.com/myleott/mnist_png/raw/master/mnist_png.tar.gz

GitHub示例地址: https://github.com/deeplearning4j/deeplearning4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/quickstart/modeling/convolution/LeNetMNISTReLu.java

/*******************************************************************************
*
*
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
* See the NOTICE file distributed with this work for additional
* information regarding copyright ownership.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/ package org.deeplearning4j.examples.quickstart.modeling.convolution; import org.datavec.api.io.labels.ParentPathLabelGenerator;
import org.datavec.api.split.FileSplit;
import org.datavec.image.loader.NativeImageLoader;
import org.datavec.image.recordreader.ImageRecordReader;
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.deeplearning4j.examples.utils.DataUtilities;
import org.deeplearning4j.util.ModelSerializer;
import org.nd4j.evaluation.classification.Evaluation;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization;
import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler;
import org.nd4j.linalg.learning.config.Nesterovs;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import org.nd4j.linalg.schedule.MapSchedule;
import org.nd4j.linalg.schedule.ScheduleType;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory; import java.io.File;
import java.util.HashMap;
import java.util.Map;
import java.util.Random; /**
* Implementation of LeNet-5 for handwritten digits image classification on MNIST dataset (99% accuracy)
* <a href="http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf">[LeCun et al., 1998. Gradient based learning applied to document recognition]</a>
* Some minor changes are made to the architecture like using ReLU and identity activation instead of
* sigmoid/tanh, max pooling instead of avg pooling and softmax output layer.
* <p>
* This example will download 15 Mb of data on the first run.
*
* @author hanlon
* @author agibsonccc
* @author fvaleri
* @author dariuszzbyrad
*/
public class LeNetMNISTReLu {
private static final Logger LOGGER = LoggerFactory.getLogger(LeNetMNISTReLu.class);
// private static final String BASE_PATH = System.getProperty("java.io.tmpdir") + "/mnist";
private static final String BASE_PATH = "D:\\Documents\\Downloads\\mnist_png";
private static final String DATA_URL = "http://github.com/myleott/mnist_png/raw/master/mnist_png.tar.gz"; public static void main(String[] args) throws Exception {
// 图片高度
int height = 28; // height of the picture in px
// 图片宽度
int width = 28; // width of the picture in px
// 通道 1 表示 黑白
int channels = 1; // single channel for grayscale images
// 可能出现的结果数量 0-9 10个数字
int outputNum = 10; // 10 digits classification
// 批处理数量
int batchSize = 54; // number of samples that will be propagated through the network in each iteration
// 迭代次数
int nEpochs = 1; // number of training epochs
// 随机数生成器
int seed = 1234; // number used to initialize a pseudorandom number generator.
Random randNumGen = new Random(seed); LOGGER.info("Data load...");
if (!new File(BASE_PATH + "/mnist_png").exists()) { LOGGER.debug("Data downloaded from {}", DATA_URL);
String localFilePath = BASE_PATH + "/mnist_png.tar.gz";
if (DataUtilities.downloadFile(DATA_URL, localFilePath)) {
DataUtilities.extractTarGz(localFilePath, BASE_PATH);
}
} LOGGER.info("Data vectorization...");
// vectorization of train data
File trainData = new File(BASE_PATH + "/mnist_png/training");
FileSplit trainSplit = new FileSplit(trainData, NativeImageLoader.ALLOWED_FORMATS, randNumGen);
ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator(); // use parent directory name as the image label
ImageRecordReader trainRR = new ImageRecordReader(height, width, channels, labelMaker);
trainRR.initialize(trainSplit);
// MNIST中的数据
DataSetIterator trainIter = new RecordReaderDataSetIterator(trainRR, batchSize, 1, outputNum); // pixel values from 0-255 to 0-1 (min-max scaling)
DataNormalization imageScaler = new ImagePreProcessingScaler();
imageScaler.fit(trainIter);
trainIter.setPreProcessor(imageScaler); // vectorization of test data
File testData = new File(BASE_PATH + "/mnist_png/testing");
FileSplit testSplit = new FileSplit(testData, NativeImageLoader.ALLOWED_FORMATS, randNumGen);
ImageRecordReader testRR = new ImageRecordReader(height, width, channels, labelMaker);
testRR.initialize(testSplit);
DataSetIterator testIter = new RecordReaderDataSetIterator(testRR, batchSize, 1, outputNum);
testIter.setPreProcessor(imageScaler); // same normalization for better results LOGGER.info("Network configuration and training...");
// reduce the learning rate as the number of training epochs increases
// iteration #, learning rate
Map<Integer, Double> learningRateSchedule = new HashMap<>();
learningRateSchedule.put(0, 0.06);
learningRateSchedule.put(200, 0.05);
learningRateSchedule.put(600, 0.028);
learningRateSchedule.put(800, 0.0060);
learningRateSchedule.put(1000, 0.001); MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(seed)
.l2(0.0005) // ridge regression value
.updater(new Nesterovs(new MapSchedule(ScheduleType.ITERATION, learningRateSchedule)))
.weightInit(WeightInit.XAVIER)
.list()
.layer(new ConvolutionLayer.Builder(5, 5)
.nIn(channels)
.stride(1, 1)
.nOut(20)
.activation(Activation.IDENTITY)
.build())
.layer(new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
.kernelSize(2, 2)
.stride(2, 2)
.build())
.layer(new ConvolutionLayer.Builder(5, 5)
.stride(1, 1) // nIn need not specified in later layers
.nOut(50)
.activation(Activation.IDENTITY)
.build())
.layer(new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
.kernelSize(2, 2)
.stride(2, 2)
.build())
.layer(new DenseLayer.Builder().activation(Activation.RELU)
.nOut(500)
.build())
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.nOut(outputNum)
.activation(Activation.SOFTMAX)
.build())
.setInputType(InputType.convolutionalFlat(height, width, channels)) // InputType.convolutional for normal image
.build(); MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
net.setListeners(new ScoreIterationListener(10));
LOGGER.info("Total num of params: {}", net.numParams()); // evaluation while training (the score should go down)
for (int i = 0; i < nEpochs; i++) {
net.fit(trainIter);
LOGGER.info("Completed epoch {}", i);
Evaluation eval = net.evaluate(testIter);
LOGGER.info(eval.stats()); trainIter.reset();
testIter.reset();
} File ministModelPath = new File(BASE_PATH + "/minist-model.zip");
ModelSerializer.writeModel(net, ministModelPath, true);
LOGGER.info("The MINIST model has been saved in {}", ministModelPath.getPath());
}
}

验证模型

package org.deeplearning4j.examples.quickstart.modeling.convolution;

import org.datavec.image.loader.NativeImageLoader;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization;
import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler; import java.io.File;
import java.io.IOException; /**
* @description:
* @author: Mr.Fang
* @create: 2023-07-14 15:06
**/ public class VerifyMNSIT {
public static void main(String[] args) throws IOException { // 加载训练好的模型
File modelFile = new File("D:\\Documents\\Downloads\\mnist_png\\minist-model.zip");
MultiLayerNetwork model = MultiLayerNetwork.load(modelFile, true); // 加载待验证的图像
File imageFile = new File("D:\\Documents\\Downloads\\mnist_png\\mnist_png\\testing\\8\\1717.png");
NativeImageLoader loader = new NativeImageLoader(28, 28, 1);
INDArray image = loader.asMatrix(imageFile);
DataNormalization scaler = new ImagePreProcessingScaler(0, 1);
scaler.transform(image); // 对图像进行预测
INDArray output = model.output(image);
int predictedLabel = output.argMax().getInt();
// 在这行代码中,`output.argMax()`用于找到`output`中具有最大值的索引。`output`是一个包含模型的输出概率的NDArray对象。对于MNIST模型,输出是一个长度为10的向量,表示数字0到9的概率分布。
//
//`.argMax()`方法返回具有最大值的索引。例如,如果`output`的值为[0.1, 0.3, 0.2, 0.05, 0.25, 0.05, 0.05, 0.1, 0.05, 0.05],则`.argMax()`将返回索引1,因为在位置1处的值0.3是最大的。
//
//最后,`.getInt()`方法将获取`.argMax()`的结果并将其转换为一个整数,表示预测的标签。在这个例子中,`predictedLabel`将包含模型预测的数字标签。
//
//简而言之,这行代码的作用是找到输出中概率最高的数字标签,以进行预测。
System.out.println("Predicted label: " + predictedLabel);
}
}

输出结果

o.n.l.f.Nd4jBackend - Loaded [CpuBackend] backend
o.n.n.NativeOpsHolder - Number of threads used for linear algebra: 6
o.n.l.c.n.CpuNDArrayFactory - Binary level Generic x86 optimization level AVX/AVX2
o.n.n.Nd4jBlas - Number of threads used for OpenMP BLAS: 6
o.n.l.a.o.e.DefaultOpExecutioner - Backend used: [CPU]; OS: [Windows 10]
o.n.l.a.o.e.DefaultOpExecutioner - Cores: [12]; Memory: [4.0GB];
o.n.l.a.o.e.DefaultOpExecutioner - Blas vendor: [OPENBLAS]
o.n.l.c.n.CpuBackend - Backend build information:
GCC: "12.1.0"
STD version: 201103L
DEFAULT_ENGINE: samediff::ENGINE_CPU
HAVE_FLATBUFFERS
HAVE_OPENBLAS
o.d.n.m.MultiLayerNetwork - Starting MultiLayerNetwork with WorkspaceModes set to [training: ENABLED; inference: ENABLED], cacheMode set to [NONE]
Predicted label: 8

deeplearning4j训练MNIST数据集以及验证的更多相关文章

  1. 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集

    上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...

  2. 使用caffe训练mnist数据集 - caffe教程实战(一)

    个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...

  3. 搭建简单模型训练MNIST数据集

    # -*- coding = utf-8 -*- # @Time : 2021/3/16 # @Author : pistachio # @File : test1.py # @Software : ...

  4. MXNet学习-第一个例子:训练MNIST数据集

    一个门外汉写的MXNET跑MNIST的例子,三层全连接层最后验证率是97%左右,毕竟是第一个例子,主要就是用来理解MXNet怎么使用. #导入需要的模块 import numpy as np #num ...

  5. 【Mxnet】----1、使用mxnet训练mnist数据集

    使用自己准备的mnist数据集,将0-9的bmp图像分别放到0-9文件夹下,然后用mxnet训练. 1.制作rec数据集 (1).制作list

  6. TensorFlow 训练MNIST数据集(2)—— 多层神经网络

    在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码 ...

  7. TensorFlow训练MNIST数据集(1) —— softmax 单层神经网络

    1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import inp ...

  8. pytorch实现MLP并在MNIST数据集上验证

    写在前面 由于MLP的实现框架已经非常完善,网上搜到的代码大都大同小异,而且MLP的实现是deeplearning学习过程中较为基础的一个实验.因此完全可以找一份源码以参考,重点在于照着源码手敲一遍, ...

  9. TensorFlow初探之简单神经网络训练mnist数据集(TensorFlow2.0代码)

    from __future__ import print_function from tensorflow.examples.tutorials.mnist import input_data #加载 ...

  10. TensorFlow训练MNIST数据集(3) —— 卷积神经网络

    前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%.在换用多层神经网络后,正确率已有很大的提升.这次将采用卷积神经网络继续进行测试. 1.模型基本结构 ...

随机推荐

  1. 高并发场景QPS等专业指标揭秘大全与调优实战

    高并发场景QPS等专业指标揭秘大全与调优实战 最近经常有小伙伴问及高并发场景下QPS的一些问题,特意结合项目经验和网上技术贴做了一些整理和归纳,供大家参考交流. 一.一直再说高并发,多少QPS才算高并 ...

  2. 带你走进红帽企业级 Linux 6体验之旅(安装篇)

    红帽在11月10日发布了其企业级Linux,RHEL 6的正式版(51CTO编辑注:红帽官方已经不用RHEL这个简称了,其全称叫做Red Hat Enterprise Linux).新版带来了将近18 ...

  3. VulnHub-ical打靶记录

    这绝对是最简单的一个题目了. 目标发现 netdiscover -r 192.168.0.10/24 根据靶场和本地系统的网段进行扫描. 信息收集 nmap -sV -Pn -sT -sC -A 19 ...

  4. JDBC数据库汇总Attack研究

    前言 针对除Mysql的其它数据库的jdbc attack分析 H2 RCE 介绍 H2 是一个用 Java 开发的嵌入式数据库,它本身只是一个类库,即只有一个 jar 文件,可以直接嵌入到应用项目中 ...

  5. 剑指offer29(Java)-顺时针打印矩阵(简单)

    题目: 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字. 示例 1: 输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]输出:[1,2,3,6,9,8,7,4,5 ...

  6. GaussDB SQL查询语句执行过程解析

    本文分享自华为云社区<[GaussTech第2期]GaussDB SQL查询语句执行过程解析>,作者: GaussDB 数据库. SQL于关系型数据库而言,重要性不言而喻.就像一个乐团的指 ...

  7. 用了那么久的Lombok,你知道它的原理么?

    简介: 在写Java代码的时候,最烦写setter/getter方法,自从有了Lombok插件不用再写那些方法之后,感觉再也回不去了,那你们是否好奇过Lombok是怎么把setter/getter方法 ...

  8. [Gse] 高效的Golang中文分析库推荐

    优点:用法简单,支持各种语言,基本满足需求. 缺点:默认分词字典文件有 8M 需测试使用速度. 我们可以直接封装一个简单的辅助方法来实现分词功能: // @author cnblogs.com/far ...

  9. [FAQ] Quasar 组件 q-select 如何触发 onChange 事件

    Quasar 文档都提供了组件的可用参数和事件.方法. qSelect(q-select) 并没有 @change 事件,需要使用 @update 事件,注意用法. <q-select v-mo ...

  10. WPF控件:密码框绑定MVVM

    以下是一种使用 MVVM 模式的方法: 首先,在 ViewModel 中添加一个属性来保存密码,我们可以使用 SecureString 类型. // 密码变量 private SecureString ...