更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群

摘要

Data Catalog 产品,通过汇总技术和业务元数据,解决大数据生产者组织梳理数据、数据消费者找数和理解数的业务场景,并服务于数据开发和数据治理的产品体系。本文介绍了火山引擎 DataLeap 套件下Data Catalog系统的构建和迭代过程,概要介绍核心设计以及部分关键实现。

背景

元数据与Data Catalog

元数据,一般指描述数据的数据,对数据及信息资源的描述性信息。在当前大数据的上下文里,通常又可细分为技术元数据和业务元数据。
Data Catalog,是一种元数据管理的服务,会收集技术元数据,并在其基础上提供更丰富的业务上下文与语义,通常支持元数据编目、查找、详情浏览等功能。
元数据是Data Catalog系统的基础,而Data Catalog使元数据更好的发挥业务价值。

Data Catalog的业务价值

火山引擎 DataLeap 套件下Data Catalog系统主要服务于两类用户的两种核心场景。
对于数据生产者来说,他们利用Data Catalog系统来组织、梳理自己负责的各类元数据。生产者大部分是大数据开发的同学。通常,生产者会将某一批相关的元数据以目录等形式编排到一起,方便维护。另外,生产者会持续的在技术元数据的基础上,丰富业务相关的属性,比如打业务标签,添加应用场景描述,字段解释等。
对于数据消费者来说,他们通过Data Catalog查找和理解他们需要的数据。在用户数量和角色上看,消费者远多于生产者,涵盖了数据分析师、产品、运营等多种角色的同学。通常,消费者会通过关键字检索,或者目录浏览,来查找解决自己业务场景的数据,并浏览详情介绍,字段描述,产出关系等,进一步的理解和信任数据。
另外,Data Catalog系统中的各类元数据,也会向上服务于数据开发、数据治理两大类产品体系。
在大数据领域,各类计算和存储系统百花齐放,概念和原理又千差万别,对于元数据的采集、组织、理解、信任等,都带来了很大挑战。因此,做好一个Data Catalog产品,本身是一个门槛低、上限高的工作,需要有一个持续打磨提升的过程。

旧版本痛点

字节跳动Data Catalog产品早期为能较快解决Hive的元数据收集与检索工作,是基于LinkedIn Wherehows进行二次改造 。Wherehows架构相对简单,采用Backend + ETL的模式。初期版本,主要利用Wherehows的存储设计和ETL框架,自研实现前后端的功能模块。
随着字节跳动业务的快速发展, 公司内各类存储引擎不断引入,数据生产者和消费者的痛点都日益明显。之前系统的设计问题,也到了需要解决的阶段。具体来说:
  • 用户层面痛点:
    • 数据生产者: 多引擎环境下,没有便捷、友好的数据组织形式,来一站式的管理各类存储、计算引擎的技术与业务元数据
    • 数据消费者: 各种引擎之间找数难,元数据的业务解释零散造成理解数难,难以信任
  • 技术痛点:
    • 扩展性:新接入一类元数据时,整套系统伤筋动骨,开发成本月级别
    • 可维护性:经过一段时间的修修补补,整个系统显的很脆弱,研发人员不敢随便改动;存储依赖重,同时使用了MySQL、ElasticSearch、图数据库等系统存储元数据,维护成本很高;接入一种元数据会增加2~3个ETL任务,运维成本直线上升

新版本目标

基于上述痛点,火山引擎 DataLeap 研发人员重新设计实现Data Catalog系统,希望能达成如下目标:
  • 产品能力上,帮助数据生产者方便快捷组织元数据,数据消费者更好的找数和理解数
  • 系统能力上,将接入新型元数据的成本从月级别降低为星期甚至天级别,架构精简,单人业余时间可运维

调研与思路

业界产品调研

站在巨人的肩膀上,动手之前火山引擎 DataLeap 研发人员针对业界主流DataCatalog产品做了产品功能和技术调研。因各个系统都在频繁迭代,数据仅供参考。
产品分类
产品名称
支持元数据种类
重要产品功能
机器学习能力
获取信息途径
特点分析
 
独角兽
C**
40+
 
搜索、血缘、标签、评价与打分、认证、问答、Connector市场等
demo和文档
功能丰富,成熟度高,产品设计上有诸多可借鉴之处
A**
60+
 
搜索、血缘、标签、问答、Connector市场等
demo和文档
功能较丰富,成熟度较高,产品能力可做参考
开源
A** A**
 
10+
 
搜索、血缘、标签等
 
源码和文档
离线相关数据源支持较好,类型系统和存储系统设计巧妙,但产品侧能力弱。近期迭代较缓慢
L** D**
40+
 
搜索、血缘、标签、统计大盘等
 
源码和文档
发展较快,背后商业化公司支持力度大,有在线demo环境可随时体验,功能简单直接
商业化
A** P**
30+
搜索、血缘、标签、统计大盘等
 
产品体验和文档
功能较简单,与其公有云结合紧密,部分功能有借鉴意义

升级思路

根据调研结论,结合字节已有业务特点,火山引擎 DataLeap 研发人员敲定了以下发展思路:
  • 对于搜索、血缘这类核心能力,做深做强,对齐业界领先水平
  • 对于各产品间特色功能,挑选适合字节业务特点的做融合
  • 技术体系上,存储和模型能力基于Apache Atlas改造,应用层支持从旧版本平滑迁移

点击跳转大数据研发治理套件 DataLeap了解更多

火山引擎 DataLeap 构建Data Catalog系统的实践(一):背景与调研思路的更多相关文章

  1. 火山引擎 DataLeap 的 Data Catalog 系统公有云实践

      Data Catalog 通过汇总技术和业务元数据,解决大数据生产者组织梳理数据.数据消费者找数和理解数的业务场景.本篇内容源自于火山引擎大数据研发治理套件 DataLeap 中的 Data Ca ...

  2. 如何又快又好实现 Catalog 系统搜索能力?火山引擎 DataLeap 这样做

      摘要 DataLeap 是火山引擎数智平台 VeDI 旗下的大数据研发治理套件产品,帮助用户快速完成数据集成.开发.运维.治理.资产.安全等全套数据中台建设,降低工作成本和数据维护成本.挖掘数据价 ...

  3. 字节跳动构建Data Catalog数据目录系统的实践(上)

    作为数据目录产品,Data Catalog 通过汇总技术和业务元数据,解决大数据生产者组织梳理数据.数据消费者找数和理解数的业务场景,并服务于数据开发和数据治理的产品体系.本文介绍了字节跳动 Data ...

  4. 火山引擎 DataLeap:3 个关键步骤,复制字节跳动一站式数据治理经验

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,并进入官方交流群 DataLeap 是火山引擎数智平台 VeDI 旗下的大数据研发治理套件产品,帮助用户快速完成数据集成.开发.运维.治理. ...

  5. 火山引擎 DataLeap:揭秘字节跳动数据血缘架构演进之路

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 DataLeap 是火山引擎数智平台 VeDI 旗下的大数据研发治理套件产品,帮助用户快速完成数据集成.开发.运维 ...

  6. 火山引擎 DataLeap:一家企业,数据体系要怎么搭建?

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 导读:经过十多年的发展,数据治理在传统行业以及新兴互联网公司都已经产生落地实践.字节跳动也在探索一种分布式的数据治 ...

  7. 火山引擎DataLeap数据调度实例的 DAG 优化方案

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,并进入官方交流群 实例 DAG 介绍 DataLeap 是火山引擎自研的一站式大数据中台解决方案,集数据集成.开发.运维.治理.资产管理能力 ...

  8. 以字节跳动内部 Data Catalog 架构升级为例聊业务系统的性能优化

    背景 字节跳动 Data Catalog 产品早期,是基于 LinkedIn Wherehows 进行二次改造,产品早期只支持 Hive 一种数据源.后续为了支持业务发展,做了很多修修补补的工作,系统 ...

  9. 使用 Kafka 和 Spark Streaming 构建实时数据处理系统

    使用 Kafka 和 Spark Streaming 构建实时数据处理系统 来源:https://www.ibm.com/developerworks,这篇文章转载自微信里文章,正好解决了我项目中的技 ...

  10. 基于MRS-ClickHouse构建用户画像系统方案介绍

    业务场景 用户画像是对用户信息的标签化.用户画像系统通过对收集的各维度数据,进行深度的分析和挖掘,给不同的用户打上不同的标签,从而刻画出客户的全貌.通过用户画像系统,可以对各个用户进行精准定位,从而将 ...

随机推荐

  1. 数据结构-线性表-双向链表(c++)

    与单循环链表类似,但析构函数需要注意 析构函数: 因为while循环的条件是p->next!=front,所以不能直接delete front: template<class T> ...

  2. Java IO教程- Java文件

    创建文件 我们可以从中创建一个 File 对象 路径名 父路径名和子路径名 URI(统一资源标识符) 我们可以使用File类的以下构造函数之一创建一个文件: File(String pathname) ...

  3. reverse_re3

    main函数 点击重要函数 对if里面的数字按r键,使其从ASCII码转为字符 发现wasd四个关键的移动方向键,判断为迷宫问题 判断应该是要次数为2,即次数++3(从0开始计数)次才会有flag 点 ...

  4. 牛客多校第五场 K King of Range

    题意: 给定一个\(n\)个数得序列\(a_i\),给定\(m\)个询问,每次给出一个\(k\),寻找有多少个区间\([l, r]\)中最大值与最小值之差严格大于\(k\). 思路: 可以发现,如果已 ...

  5. 归并排序(merge_sort)

    算法时间复杂度:妥妥的nlogn 步骤: 1.确定分界点 mid = (l+r) >> 1 2.递归排序左右两边 3.归并--合二为一(用两个指针,分别指向两个序列) 就是递归到最底部,然 ...

  6. JuiceFS 用户必备的 6 个技巧

    随着大数据.AI 技术的发展,越来越多的企业.团队和个人开始使用 JuiceFS,本文整理了 6 个超实用的 JuiceFS 技巧,帮助大家提升 JuiceFS 的管理效率. 一.查看已挂载的文件系统 ...

  7. Spring Cloud 整合

    前言 玩SpringCloud之前最好懂SpringBoot,别搞撑死骆驼的事.Servlet整一下变成Spring:SSM封装.加入东西就变为SpringBoot:SpringBoot再封装.加入东 ...

  8. ABAP 生产订单长文本增强 <销售计划 、物料独立需求 长文本带入 计划订单-生产订单 >

    计划订单长文本带入生产订单 尝试在生产订单保存后 用 creat_text 函数 去创建长文本,发现前台不显示,查看 文本抬头底表 STXL 发现有值 ,用READ 函数 读取 能读. DATA:td ...

  9. npm install 报-4048错误

    报错原因: 有缓存 权限不够 有三种解决方法: 第一种:找到.npmrc文件并删除 在 C:\Users\自己用户的文件夹\ 下找到 .npmrc 文件并删除 注意:这个文件是隐藏的,需要显示隐藏才能 ...

  10. Scrapy框架架构

    ENGINE:引擎,负责各个组件的管理. SPIDERS:各个爬虫文件类.(我们一般要写的代码就是这个). SCHEDULER:调度器,ENGINE将爬虫任务分发给该组件,由该组件调度爬虫任务. DO ...