前言

本文使用Python实现了PCA算法,并使用ORL人脸数据集进行了测试并输出特征脸,简单实现了人脸识别的功能。

1. 准备

ORL人脸数据集共包含40个不同人的400张图像,是在1992年4月至1994年4月期间由英国剑桥的Olivetti研究实验室创建。此数据集包含40个类,每个类含10张图片。所有的图像是以PGM格式存储,灰度图,图像大小为 92 x 112像素。

对于每个类,我们选择前7张图片用于训练,后3张图片用于测试。我们将图像缩放至原来的0.5倍,以加快训练速度。最后选择100个特征向量进行降维。

import os
import cv2
import numpy as np
from typing import Union, LiteralString
import matplotlib.pyplot as plt
%matplotlib inline scaled = 0.5 # 图像缩放至原来的scaled倍
train_num = 7 # 7张用于训练
img_num = 10 # 总共10张图片
num_k = 100 # 选择100个特征
save_path = './ORL_eigenfaces'
dataset_path = '../dataset/ORL/att_faces/'
cov_matrix_path = './PCA_ORL.npy'

2. 数据集处理

将每个类的前7张图片使用img2np转为一维向量,作为训练集。并计算每个类前7张图片的平均特征向量,用于后面的对比。

# 图像转为一维向量
def img2np(img_path: Union[str, LiteralString], scaled: float = 1.) -> np.ndarray:
img = cv2.imread(img_path)
h, w = img.shape[0], img.shape[1]
img = cv2.resize(img, (int(h * scaled), int(w * scaled)))
if img.shape[-1] > 1:
img = cv2.cvtColor(img, cv2.COLOR_BGRA2GRAY)
return np.array(img).flatten()
class_names = os.listdir(dataset_path)
print(f'数据集总共有 {len(class_names)} 个类') # 列表示特征值,行表示图像
samples_data = []
avg_feature = [] # 每个类的平均特征 for class_name in class_names:
class_path = os.path.join(dataset_path, class_name)
img_names = os.listdir(class_path)
class_feature = [] # 计算每个类前train_num的平均特征
for img_name in img_names[:train_num]: # 取前七张参与训练
img_data = img2np(os.path.join(class_path,img_name), scaled=scaled) samples_data.append(img_data)
class_feature.append(img_data) avg_feature.append(np.array(class_feature).mean(axis=0))
samples_data = np.array(samples_data)
avg_feature = np.array(avg_feature) print(f'数据集特征矩阵形状: {samples_data.shape},平均特征矩阵形状:{avg_feature.shape}')
数据集总共有 40 个类
数据集特征矩阵形状: (280, 2576),平均特征矩阵形状:(40, 2576)

3. PCA降维

PCA计算时间较长,因此建议先对图像进行缩放,并保存降维后的特征矩阵,方便后续调用。

# PCA算法保留前k个特征向量
def pca(X: np.ndarray, k: int) -> np.ndarray: # 计算每个特征均值
mean = np.mean(X, axis=0)
# 数据标准化
norm_X = X - mean
# 计算协方差矩阵
cov_matrix = np.cov(norm_X, rowvar=False)
# 计算特征值与特征向量
eig_val, eig_vec = np.linalg.eig(cov_matrix)
abs_eig_vec = np.abs(eig_val)
# 按照特征值的绝对值大小增序排序
sorted_Index = np.argsort(abs_eig_vec) # 选择前k个特征值对应的特征向量
selected_vectors = eig_vec[:, sorted_Index[-k :]]
# 低维投影
return selected_vectors
if os.path.exists(cov_matrix_path):
pca_vectors = np.load(cov_matrix_path)
else:
pca_vectors = pca(samples_data, num_k) # 选择100个特征向量
np.save(cov_matrix_path, pca_vectors) # 训练时间较长,可以保存方便调用
print(f'PCA降维后的特征矩阵形状: {pca_vectors.shape}')
PCA降维后的特征矩阵形状: (2576, 100)

4. 测试

假设有C个类,每个图像的特征值数为N,降维后选取的特征向量数为K。

首先对类的平均特征矩阵进行降维,降维后的矩阵形状为(C x K)。

测试时:

  1. 对每张测试图片进行降维:图像特征(1 x N)与PCA降维特征向量(N x K)相乘;
  2. 对第一步得到的结果与平均特征矩阵的每一行(每一行大小为1 x K)进行余弦相似度比较得到C个数;
  3. 选择C个数中最大的下标,就是预测的类别。
pca_avg_feature = np.dot(avg_feature, pca_vectors) # 进行降维
print(f'PCA降维后的平均特征矩阵形状: {pca_avg_feature.shape}')
PCA降维后的平均特征矩阵形状: (40, 100)
# 计算余弦相似度
def cosine_similarity(vec1: np.ndarray, vec2: np.ndarray):
# 向量点乘
dot_product = np.dot(vec1, vec2) # 计算L2范数
magnitude1 = np.linalg.norm(vec1)
magnitude2 = np.linalg.norm(vec2) # 计算余弦相似度
return dot_product / (magnitude1 * magnitude2) test_res = []
correct = 0
wrong = 0
for i, class_name in enumerate(class_names):
class_path = os.path.join(dataset_path, class_name)
img_names = os.listdir(class_path)
true_label = i
for img_name in img_names[train_num: img_num]:
img_data = img2np(os.path.join(class_path, img_name), scaled=scaled)
predict_img = np.dot(img_data, pca_vectors)
similarity = []
for j in pca_avg_feature:
similarity.append(cosine_similarity(j, predict_img))
predict_label = np.argmax(similarity)
if true_label == predict_label:
correct += 1
else:
wrong += 1
test_res.append((true_label, predict_label))
accuracy = correct / (correct + wrong)
print(f'Total samples: {correct + wrong}, correct: {correct}, wrong: {wrong}, accuracy: {accuracy:.4f}')
Total samples: 120, correct: 111, wrong: 9, accuracy: 0.9250

5. 结果展示

将特征向量保存为特征脸并输出。此处注意下,缩放后的图像大小为56 x 46,但保存的特征脸大小为 46 x 56。

# 保存前k个特征向量的特征脸
def save_eigenfaces(eigenvectors: np.ndarray,
k: int,
img_size: tuple[int, int], # (h, w)
path: Union[str, LiteralString]) -> bool:
if os.path.exists(path) is False:
os.mkdir(path) # 创建保存路径文件夹
for i in range(k):
eigenfaces = np.real(eigenvectors[:, i]) # 对特征向量进行归一化,投影到0-255的灰度空间
norm_eigenfaces = ((eigenfaces - np.min(eigenfaces)) /
(np.max(eigenfaces) - np.min(eigenfaces)) * 255)
norm_eigenface_uint8 = norm_eigenfaces.astype(np.uint8)
shaped_eigenface = norm_eigenface_uint8.reshape(img_size)
cv2.imwrite(os.path.join(path, f'eigenfaces{i}.png'), shaped_eigenface)
return True save_eigenfaces(pca_vectors, 100, (46, 56), save_path) # 原大小为112 x 92,缩放后为56 x 46 plt.figure(figsize=(8, 8))
for i in range(16):
plt.subplot(4,4,i+1)
plt.imshow(cv2.imread(os.path.join(save_path, f'eigenfaces{i}.png')))
plt.title(f'eigenfaces{i}')
plt.xticks([])
plt.yticks([])
plt.show()

6. 总结

PCA可以实现简单的人脸识别。

环境配置:

matplotlib==3.7.2
numpy==1.25.2
opencv_python==4.8.1.78

模式识别实验:基于主成分分析(PCA)的人脸识别的更多相关文章

  1. 基于PCA的人脸识别步骤

    代码下载:基于PCA(主成分分析)的人脸识别 人脸识别是一个有监督学习过程,首先利用训练集构造一个人脸模型,然后将测试集与训练集进行匹配,找到与之对应的训练集头像.最容易的方式是直接利用欧式距离计算测 ...

  2. 基于Face-Recognition的计算机人脸识别安全认证程序

    20202411 2020-2021-2 <Python程序设计>实验四报告 基于Face-Recognition的计算机人脸识别安全认证程序 课程:<Python程序设计> ...

  3. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【一】如何配置caffe属性表

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  4. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【三】VGG网络进行特征提取

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  5. 基于深度学习的人脸识别系统(Caffe+OpenCV+Dlib)【二】人脸预处理

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  6. 基于深度学习的人脸识别系统系列(Caffe+OpenCV+Dlib)——【四】使用CUBLAS加速计算人脸向量的余弦距离

    前言 基于深度学习的人脸识别系统,一共用到了5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸检测库).cudnn(gp ...

  7. 基于卷积神经网络的人脸识别项目_使用Tensorflow-gpu+dilib+sklearn

    https://www.cnblogs.com/31415926535x/p/11001669.html 基于卷积神经网络的人脸识别项目_使用Tensorflow-gpu+dilib+sklearn ...

  8. 基于Opencv快速实现人脸识别(完整版)

    无耻收藏网页链接: 基于OpenCV快速实现人脸识别:https://blog.csdn.net/beyond9305/article/details/92844258 基于Opencv快速实现人脸识 ...

  9. 【笔记】特征脸(PCA在人脸识别领域的应用)

    人脸识别与特征脸(简单介绍) 什么是特征脸 特征脸(Eigenface)是指用于机器视觉领域中的人脸识别问题的一组特征向量,该方法被认为是第一种有效的人脸识别方法. PCA的具体实现思想见 [笔记]主 ...

  10. 基于Emgu CV+百度人脸识别,实现视频动态 人脸抓取与识别

    背景 目前AI 处于风口浪尖,作为 公司的CTO,也作为自己的技术专研,开始了AI之旅,在朋友圈中也咨询 一些大牛对于AI 机器学习框架的看法,目前自己的研究方向主要开源的 AI 库,如:Emgu C ...

随机推荐

  1. 51 nod | 1007 正整数分组(背包DP)

    补题链接:Here 将一堆正整数分为2组,要求2组的和相差最小. 例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的. 输入 第1行:一个数N,N为正 ...

  2. Android内存泄露检测 LeakCanary2.0(Kotlin版)的实现原理

    本文介绍了开源Android内存泄漏监控工具LeakCanary2.0版本的实现原理,同时介绍了新版本新增的hprof文件解析模块的实现原理,包括hprof文件协议格式.部分实现源码等. 一.概述 L ...

  3. Flink DataStream API 编程模型

    Flink系列文章 第01讲:Flink 的应用场景和架构模型 第02讲:Flink 入门程序 WordCount 和 SQL 实现 第03讲:Flink 的编程模型与其他框架比较 第04讲:Flin ...

  4. <vue 组件 2、组件参数传递>

    代码结构 一.     01-父组件向子组件传递数据 1. 效果 展示出来的数据都是父组件传给子组件的数据 2.代码 01-父组件向子组件传递数据.html <!DOCTYPE html> ...

  5. 2 Englishi 词根

    11 mis 错 misuse misfortune misunderstand 12 out 超过: 外 outnumber outspend outdoor 13 over 过度 overprai ...

  6. 《深入理解计算机系统》(CSAPP)读书笔记 —— 第五章 优化程序性能

    写程序最主要的目标就是使它在所有可能的情况下都正确工作.一个运行得很快但是给出错误结果的程序没有任何用处.程序员必须写出清晰简洁的代码,这样做不仅是为了自己能够看懂代码,也是为了在检査代码和今后需要修 ...

  7. [tslint] Identifier 'loggedIn' is never reassigned; use 'const' instead of 'let'. (prefer-const)

  8. 引入阿里在线图标(微信小程序)

    https://www.bilibili.com/video/BV1WJ41197sD?p=49

  9. java进阶(22)--Collection接口

    一.基本概念呢 1.Collection在没有使用泛型之前的,Collection中可存储所有Object所有子类型 使用泛型后,Collection只能存储某个具体类型.   二.collectio ...

  10. 如何使用Markdown编写笔记

    Markdown是什么? Markdown 是一种轻量级标记语言,创始人为约翰·格鲁伯(John Gruber). 它允许人们使用易读易写的纯文本格式编写文档,然后转换成有效的 XHTML(或者HTM ...