SpringBoot实现限流注解
SpringBoot实现限流注解
在高并发系统中,保护系统的三种方式分别为:缓存,降级和限流。
限流的目的是通过对并发访问请求进行限速或者一个时间窗口内的的请求数量进行限速来保护系统,一旦达到限制速率则可以拒绝服务、排队或等待
1、限流类型枚举类
/**
* 限流类型
* @author ss_419
*/
public enum LimitType {
/**
* 默认的限流策略,针对某一个接口进行限流
*/
DEFAULT,
/**
* 针对某一个IP进行限流
*/
IP
}
2、自定义限流注解
/**
* @author ss_419
*/
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface RateLimiter {
/**
* 限流的 key,主要是指前缀
* @return
*/
String key() default "rate_limit:";
/**
* 在时间窗内的限流次数
* @return
*/
int count() default 100;
/**
* 限流类型
* @return
*/
LimitType limitType() default LimitType.DEFAULT;
/**
* 限流时间窗
* @return
*/
int time() default 60;
}
3、限流lua脚本
1、由于我们使用 Redis 进行限流,我们需要引入 Redis 的 maven 依赖,同时需要引入 aop 的依赖
<!-- aop依赖 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-aop</artifactId>
</dependency>
<!-- redis依赖 -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
2、配置redis以及lua脚本
@Configuration
public class RedisConfig {
@Bean
RedisTemplate<Object,Object> redisTemplate(RedisConnectionFactory factory) {
RedisTemplate<Object, Object> template = new RedisTemplate<>();
template.setConnectionFactory(factory);
Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
template.setKeySerializer(jackson2JsonRedisSerializer);
template.setValueSerializer(jackson2JsonRedisSerializer);
template.setHashKeySerializer(jackson2JsonRedisSerializer);
template.setHashValueSerializer(jackson2JsonRedisSerializer);
return template;
}
/**
* 读取lua脚本
* @return
*/
@Bean
DefaultRedisScript<Long> limitScript() {
DefaultRedisScript<Long> script = new DefaultRedisScript<>();
script.setResultType(Long.class);
script.setScriptSource(new ResourceScriptSource(new ClassPathResource("lua/limit.lua")));
return script;
}
}
通过 Lua 脚本,根据 Redis 中缓存的键值判断限流时间(也是 key 的过期时间)内,访问次数是否超出了限流次数,没超出则访问次数 +1,返回 true,超出了则返回 false。
limit.lua:
local key = KEYS[1]
local time = tonumber(ARGV[1])
local count = tonumber(ARGV[2])
local current = redis.call('get', key)
if current and tonumber(current) > count then
return tonumber(current)
end
current = redis.call('incr', key)
if tonumber(current) == 1 then
redis.call('expire', key, time)
end
return tonumber(current)
4、限流切面处理类
1、使用我们刚刚的 Lua 脚本判断是否超出了限流次数,超出了限流次数后返回一个自定义异常,然后在全局异常中去捕捉异常,返回 JSON 数据。
2、根据注解参数,判断限流类型,拼接缓存 key 值
package org.pp.ratelimiter.aspectj;
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.reflect.MethodSignature;
import org.pp.ratelimiter.annotation.RateLimiter;
import org.pp.ratelimiter.enums.LimitType;
import org.pp.ratelimiter.exception.RateLimitException;
import org.pp.ratelimiter.utils.IpUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.script.RedisScript;
import org.springframework.stereotype.Component;
import org.springframework.web.context.request.RequestContextHolder;
import org.springframework.web.context.request.ServletRequestAttributes;
import java.lang.reflect.Method;
import java.util.Collections;
@Aspect
@Component
public class RateLimiterAspect {
private static final Logger logger = LoggerFactory.getLogger(RateLimiterAspect.class);
@Autowired
RedisTemplate<Object, Object> redisTemplate;
@Autowired
RedisScript<Long> redisScript;
@Before("@annotation(rateLimiter)")
public void before(JoinPoint jp, RateLimiter rateLimiter) throws RateLimitException {
int time = rateLimiter.time();
int count = rateLimiter.count();
String combineKey = getCombineKey(rateLimiter, jp);
try {
Long number = redisTemplate.execute(redisScript, Collections.singletonList(combineKey), time, count);
if (number == null || number.intValue() > count) {
//超过限流阈值
logger.info("当前接口以达到最大限流次数");
throw new RateLimitException("访问过于频繁,请稍后访问");
}
logger.info("一个时间窗内请求次数:{},当前请求次数:{},缓存的 key 为 {}", count, number, combineKey);
} catch (Exception e) {
throw e;
}
}
/**
* 这个 key 其实就是接口调用次数缓存在 redis 的 key
* rate_limit:11.11.11.11-org.javaboy.ratelimit.controller.HelloController-hello
* rate_limit:org.javaboy.ratelimit.controller.HelloController-hello
* @param rateLimiter
* @param jp
* @return
*/
private String getCombineKey(RateLimiter rateLimiter, JoinPoint jp) {
StringBuffer key = new StringBuffer(rateLimiter.key());
if (rateLimiter.limitType() == LimitType.IP) {
key.append(IpUtils.getIpAddr(((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getRequest()))
.append("-");
}
MethodSignature signature = (MethodSignature) jp.getSignature();
Method method = signature.getMethod();
key.append(method.getDeclaringClass().getName())
.append("-")
.append(method.getName());
return key.toString();
}
}
5、使用与测试
@RestController
public class HelloController {
/**
* 限流 10 秒之内,这个接口可以访问3次
* @return
*/
@GetMapping("/hello")
@RateLimiter(time = 10,count = 3)
public Map<String, Object> hello() {
Map<String, Object> map = new HashMap<>();
map.put("status", 200);
map.put("message", "Hello RateLimiter");
return map;
}
}
十秒之内访问次数超过3次就会报异常
redis中的数据,每一次访问都加1
当访问次数超过3,则进行限流操作
SpringBoot实现限流注解的更多相关文章
- Springboot分布式限流实践
高并发访问时,缓存.限流.降级往往是系统的利剑,在互联网蓬勃发展的时期,经常会面临因用户暴涨导致的请求不可用的情况,甚至引发连锁反映导致整个系统崩溃.这个时候常见的解决方案之一就是限流了,当请求达到一 ...
- SpringBoot使用自定义注解+AOP+Redis实现接口限流
为什么要限流 系统在设计的时候,我们会有一个系统的预估容量,长时间超过系统能承受的TPS/QPS阈值,系统有可能会被压垮,最终导致整个服务不可用.为了避免这种情况,我们就需要对接口请求进行限流. 所以 ...
- 基于令牌桶算法实现的SpringBoot分布式无锁限流插件
本文档不会是最新的,最新的请看Github! 1.简介 基于令牌桶算法和漏桶算法实现的纳秒级分布式无锁限流插件,完美嵌入SpringBoot.SpringCloud应用,支持接口限流.方法限流.系统限 ...
- 分布式限流组件-基于Redis的注解支持的Ratelimiter
原文:https://juejin.im/entry/5bd491c85188255ac2629bef?utm_source=coffeephp.com 在分布式领域,我们难免会遇到并发量突增,对后端 ...
- springboot + aop + Lua分布式限流的最佳实践
整理了一些Java方面的架构.面试资料(微服务.集群.分布式.中间件等),有需要的小伙伴可以关注公众号[程序员内点事],无套路自行领取 一.什么是限流?为什么要限流? 不知道大家有没有做过帝都的地铁, ...
- SpringBoot 如何进行限流?老鸟们都这么玩的!
大家好,我是飘渺.SpringBoot老鸟系列的文章已经写了四篇,每篇的阅读反响都还不错,那今天继续给大家带来老鸟系列的第五篇,来聊聊在SpringBoot项目中如何对接口进行限流,有哪些常见的限流算 ...
- SpringBoot进阶教程(六十七)RateLimiter限流
在上一篇文章nginx限流配置中,我们介绍了如何使用nginx限流,这篇文章介绍另外一种限流方式---RateLimiter. v限流背景 在早期的计算机领域,限流技术(time limiting)被 ...
- Redisson多策略注解限流
限流:使用Redisson的RRateLimiter进行限流 多策略:map+函数式接口优化if判断 自定义注解 /** * aop限流注解 */ @Target({ElementType.METHO ...
- Sentinel整合Dubbo限流实战(分布式限流)
之前我们了解了 Sentinel 集成 SpringBoot实现限流,也探讨了Sentinel的限流基本原理,那么接下去我们来学习一下Sentinel整合Dubbo及 Nacos 实现动态数据源的限流 ...
- Redis实现的分布式锁和分布式限流
随着现在分布式越来越普遍,分布式锁也十分常用,我的上一篇文章解释了使用zookeeper实现分布式锁(传送门),本次咱们说一下如何用Redis实现分布式锁和分布限流. Redis有个事务锁,就是如下的 ...
随机推荐
- idea2020.1.3汉化包报错问题
已解决:idea2020.1.3汉化包报错问题 问题描述:插件市场提供的版本不对.不兼容,所以需要手动下载安装 这里附上文件 https://wwsi.lanzouq.com/b03czdtwf 密码 ...
- Redis的五大数据类型(简单使用)
1:Redis的简单介绍? Redis(Remote Dictionary Server ):即远程字典服务 是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型Key-Val ...
- Windows中开启自动dump的方法
@echo off echo 正在启用Dump... reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Windows Error ...
- Kubernetes Headless服务
1.概述 Headless Services是一种特殊的service,其spec:clusterIP表示为None,这样在实际运行时就不会被分配ClusterIP,也被称为无头服务,通过DNS解析提 ...
- 16、Flutter Wrap组件 实现流布局
Wrap可以实现流布局,单行的Wrap跟Row表现几乎一致,单列的Wrap则跟Column表现几乎一致.但 Row与Column都是单行单列的,Wrap则突破了这个限制,mainAxis上空间不足时, ...
- Windows下编译64位CGAL
目录 1. 准备 2. CMake构建 1. 准备 CGAL的官网准备了压缩包和安装程序两种类型的的源代码,推荐使用安装程序包,因为其中自带了编译好的gmp和mpfr库.gmp和mpfr是CGAL的依 ...
- 身未动心已远,AI带你流浪地球
摘要:我们提供了一键运行的notebook AI作画 Dreambooth 生成自定义主体,可以在ModelArts平台上调试开发自己的文生图模型. 本文分享自华为云社区<DreamBooth+ ...
- 几款Java开发者必备常用的工具,准点下班不在话下
摘要:一问一答的形式轻松学习掌握java工具. 以一问一答的形式学习java工具 Q:检查内存泄露的工具有?A: jmap生成dump转储文件,jhat可视化查看. Q:某进程CPU使用率一直占满,用 ...
- 逼疯UE设计师,不可不知的提升产品用户体验的10个测试方法
摘要:用户体验的描述比较主观,产品功能的可用性.可靠性.性能等都会影响用户的使用体验,比如功能bug问题也会说体验不好,程序崩溃也会说体验不好,性能卡顿会说体验不好,那是不是都在用户体验测试的范围呢? ...
- 教你用ab命令进行并发与压力测试
摘要:今天给大家分享一篇如何使用ab进行并发与压力测试的文章 本文分享自华为云社区<[高并发]如何使用ab进行并发与压力测试?>,作者:冰 河. 今天给大家分享一篇如何使用ab进行并发与压 ...