代码随想录算法训练营

代码随想录算法训练营Day40 动态规划|01背包问题,你该了解这些! 01背包问题,你该了解这些!滚动数组 416. 分割等和子集

01背包问题,你该了解这些!



完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。

所以背包问题的理论基础重中之重是01背包,一定要理解透!

leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。

01 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。



其实是没有从底向上去思考,而是习惯性想到了背包,那么暴力的解法应该是怎么样的呢?

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是$o(2^n)$,这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

举一个例子:

背包最大重量为4。

物品为:

重量 价值
物品0 1 15
物品1 3 20
物品2 4 30
问背包能背的物品最大价值是多少?
以下讲解和图示中出现的数字都是以这个例子为例。

二维dp数组01背包

依然动规五部曲分析一波。

  1. 确定dp数组以及下标的含义

    对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

    只看这个二维数组的定义,会有点懵,看下面这个图:



    要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。
  2. 确定递推公式

    再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

    那么可以有两个方向推出来dp[i][j]
  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

    所以递归公式: `dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])``;
  1. dp数组如何初始化

    关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

    首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:



    看其他情况。

    状态转移方程 dp[i][j] = max(dp[i - 1][j],dp[i - 1][j - weight[i]] + value[i]);可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

    dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

    那么很明显当 j < weight[0]的时候,dp[0][j]应该是 0,因为背包容量比编号0的物品重量还小。

    j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

    代码初始化如下:
for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。
dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}

dp数组初始化情况如图所示:



dp[0][j] dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

// 初始化 dp
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0));
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
}

费了这么大的功夫,才把如何初始化讲清楚,相信不少同学平时初始化dp数组是凭感觉来的,但有时候感觉是不靠谱的

4. 确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量



那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解

那么我先给出先遍历物品,然后遍历背包重量的代码。

// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); }
}

先遍历背包,再遍历物品,也是可以的!(注意我这里使用的二维dp数组)

// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
for(int i = 1; i < weight.size(); i++) { // 遍历物品
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}

要理解递归的本质和递推的方向

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:



再来看看先遍历背包,再遍历物品呢,如图:



可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

但先遍历物品再遍历背包这个顺序更好理解。

其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了

5. 举例推导dp数组

来看一下对应的dp数组的数值,如图:



最终结果就是`dp[2][4]``。

建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

void test_2_wei_bag_problem1() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
int bagweight = 4; // 二维数组
vector<vector<int>> dp(weight.size(), vector<int>(bagweight + 1, 0)); // 初始化
for (int j = weight[0]; j <= bagweight; j++) {
dp[0][j] = value[0];
} // weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
if (j < weight[i]) dp[i][j] = dp[i - 1][j];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); }
} cout << dp[weight.size() - 1][bagweight] << endl;
} int main() {
test_2_wei_bag_problem1();
}

01背包问题,你该了解这些! 滚动数组

416. 分割等和子集

题目链接:416. 分割等和子集

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1:

  • 输入: [1, 5, 11, 5]
  • 输出: true
  • 解释: 数组可以分割成 [1, 5, 5] 和 [11].

总体思路

这道题目初步看,和如下两题几乎是一样的,大家可以用回溯法,解决如下两题

  • 698.划分为k个相等的子集
  • 473.火柴拼正方形

    这道题目是要找是否可以将这个数组分割成两个子集,使得两个子集的元素和相等

    背包问题,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

    背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。

    要注意题目描述中商品是不是可以重复放入。

    即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。

    要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

    回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。

    那么来一一对应一下本题,看看背包问题如何来解决。

    只有确定了如下四点,才能把01背包问题套到本题上来。
  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

    以上分析完,我们就可以套用01背包,来解决这个问题了。

    动规五部曲分析如下:
  1. 确定dp数组以及下标的含义

    01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

    本题中每一个元素的数值既是重量,也是价值。

    套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]

    那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。

    有录友可能想,那还有装不满的时候?

    拿输入数组 [1, 5, 11, 5],举例, dp[7] 只能等于 6,因为 只能放进 1 和 5。

    而dp[6] 就可以等于6了,放进1 和 5,那么dp[6] == 6,说明背包装满了。
  2. 确定递推公式

    01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

    所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
  3. dp数组如何初始化

    在01背包,一维dp如何初始化,已经讲过,

    从dp[j]的定义来看,首先dp[0]一定是0。

    如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

    这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了

    本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。
// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector<int> dp(10001, 0);
  1. 确定遍历顺序

    动态规划:关于01背包问题,你该了解这些!(滚动数组)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

    代码如下:
// 开始 01背包
for(int i = 0; i < nums.size(); i++) {
for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
  1. 举例推导dp数组

    dp[j]的数值一定是小于等于j的。

    如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

    用例1,输入[1,5,11,5] 为例,如图:



    最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。
class Solution {
public:
bool canPartition(vector<int>& nums) {
int sum = 0; // dp[i]中的i表示背包内总和
// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200
// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了
vector<int> dp(10001, 0);
for (int i = 0; i < nums.size(); i++) {
sum += nums[i];
}
// 也可以使用库函数一步求和
// int sum = accumulate(nums.begin(), nums.end(), 0);
if (sum % 2 == 1) return false;
int target = sum / 2; // 开始 01背包
for(int i = 0; i < nums.size(); i++) {
for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
}
}
// 集合中的元素正好可以凑成总和target
if (dp[target] == target) return true;
return false;
}
};

代码随想录算法训练营Day42 动态规划的更多相关文章

  1. 代码随想录算法训练营day01 | leetcode 704/27

    前言   考研结束半个月了,自己也简单休整了一波,估了一下分,应该能进复试,但还是感觉不够托底.不管怎样,要把代码能力和八股捡起来了,正好看到卡哥有这个算法训练营,遂果断参加,为机试和日后求职打下一个 ...

  2. 代码随想录算法训练营day02 | leetcode 977/209/59

    leetcode 977   分析1.0:   要求对平方后的int排序,而给定数组中元素可正可负,一开始有思维误区,觉得最小值一定在0左右徘徊,但数据可能并不包含0:遂继续思考,发现元素分布有三种情 ...

  3. 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点

    LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0  二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...

  4. 代码随想录算法训练营day17 | leetcode ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和

    LeetCode 110.平衡二叉树 分析1.0 求左子树高度和右子树高度,若高度差>1,则返回false,所以我递归了两遍 class Solution { public boolean is ...

  5. 代码随想录算法训练营day13

    基础知识 二叉树基础知识 二叉树多考察完全二叉树.满二叉树,可以分为链式存储和数组存储,父子兄弟访问方式也有所不同,遍历也分为了前中后序遍历和层次遍历 Java定义 public class Tree ...

  6. 代码随想录算法训练营day12 | leetcode 239. 滑动窗口最大值 347.前 K 个高频元素

    基础知识 ArrayDeque deque = new ArrayDeque(); /* offerFirst(E e) 在数组前面添加元素,并返回是否添加成功 offerLast(E e) 在数组后 ...

  7. 代码随想录算法训练营day10 | leetcode 232.用栈实现队列 225. 用队列实现栈

    基础知识 使用ArrayDeque 实现栈和队列 stack push pop peek isEmpty() size() queue offer poll peek isEmpty() size() ...

  8. 代码随想录算法训练营day06 | leetcode 242、349 、202、1

    基础知识 哈希 常见的结构(不要忘记数组) 数组 set (集合) map(映射) 注意 哈希冲突 哈希函数 LeetCode 242 分析1.0 HashMap<Character, Inte ...

  9. 代码随想录算法训练营day03 | LeetCode 203/707/206

    基础知识 数据结构初始化 // 链表节点定义 public class ListNode { // 结点的值 int val; // 下一个结点 ListNode next; // 节点的构造函数(无 ...

  10. 代码随想录算法训练营day24 | leetcode 77. 组合

    基础知识 回溯法解决的问题都可以抽象为树形结构,集合的大小就构成了树的宽度,递归的深度构成的树的深度 void backtracking(参数) { if (终止条件) { 存放结果; return; ...

随机推荐

  1. SpringCloud微服务实战——搭建企业级开发框架(五十一):微服务安全加固—自定义Gateway拦截器实现防止SQL注入/XSS攻击

      SQL注入是常见的系统安全问题之一,用户通过特定方式向系统发送SQL脚本,可直接自定义操作系统数据库,如果系统没有对SQL注入进行拦截,那么用户甚至可以直接对数据库进行增删改查等操作.   XSS ...

  2. js直接操作数据库会怎么样

    这几天刷脉脉的时候看到一个话题初看觉得可笑,再看陷入沉思,最后还是决定花点时间想清楚,写下来. 确实没见人这么干过,为什么呢? 技术限制 被技术限制了?据我所知目前没有面向js的数据库驱动,但反观现在 ...

  3. protobuf 详解

    protobuf protobuf概述 protobuf简介 Protobuf是Protocol Buffers的简称,它是Google公司开发的一种数据描述语言,是一种轻便高效的结构化数据存储格式, ...

  4. Maven常用依赖包简单

    Maven官方仓库:Maven Repository: junit » junit (mvnrepository.com) Mysql 1 <!--Mysql--> 2 <depen ...

  5. 2020中国最好大学排名.py(亲测有效)

    import requests from bs4 import BeautifulSoup import bs4 def getHTMLText(url): try: r = requests.get ...

  6. MQTT(EMQX) - Java 调用 MQTT Demo 代码

    POM <dependency> <groupId>org.eclipse.paho</groupId> <artifactId>org.eclipse ...

  7. 重磅!AWS升级对Apache Hudi的集成

    全球最大云厂商AWS的 Athena 团队又更新了 Athena 与 Apache Hudi 的集成,以支持新功能及最新的 0.8.0 社区版本.早在Apache Hudi还处于孵化阶段时,AWS A ...

  8. 鼎捷ERP二次开发教程 Tiptop GP开发资料大全 Tipto开发实战经验 鼎捷开发实战例子 Tiptop GP二次开发项目例子 4GL开发Demo 鼎捷二次开发完整例子 鼎捷ERP二次开发入门

    本人在ERP实施公司做顾问四五年,参与企业实施ERP十多个项目,非常熟悉企业ERP流程,在实施过程遇到众多问题,提出了不少根据企业具体情况的解决方案. 曾经参与鼎捷Tiptop GP实施十多个项目,具 ...

  9. [Linux/CentOS]通过yum获取rpm安装包

    1 yum获取rpm安装包 有时候你需要一个软件包在离线linux系统上安装,如果自己找软件包麻烦,可以linux yum下载需要的软件包. 准备工作是找一台能够联网的linux,并准备好了yum及y ...

  10. [Linux]Linux中安装软件的方式?

    近日处理安全漏洞时,出现了这样一个问题: 判断某软件组件是通过何种方式安装的. 知道是何种方式安装,才方便做进一步的解决(升级/配置/卸载等操作) 1 解压即用 例如: sublime_text.py ...