[分类算法] :朴素贝叶斯 NaiveBayes
1. 原理和理论基础(参考)
2. Spark代码实例:
1)windows 单机
import org.apache.spark.mllib.classification.NaiveBayes
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.{SparkConf, SparkContext} object local_NaiveBayes { System.setProperty("hadoop.dir.home","E:/zhuangji/winutil/") def main(args:Array[String]) {
val conf = new SparkConf().setMaster("local[2]").setAppName("NaiveBayes")
val sc = new SparkContext(conf) //initiated data and labeled
val data = sc.textFile("E:/Java_WS/ScalaDemo/data/sample_naive_bayes_data.txt")
val parsedData = data.map {
line =>
val parts = line.split(',')
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split( ' ').map(_.toDouble)) )
} // split data
val splits=parsedData.randomSplit(Array(0.6,0.4),seed=11L)
val training=splits(0)
val test=splits(1) //model and calculated precision & accuracy
val model=NaiveBayes.train(training,lambda=1.0,modelType="multinomial") val predictionAndLabel=test.map(p=>(model.predict(p.features),p.label))
val accuracy=1.0*predictionAndLabel.filter(x=>x._1==x._2).count()/test.count() //save and load model
model.save(sc,"E:/Spark/models/NaiveBayes")
val sameModel=NaiveBayesModel.load(sc,"E:/Spark/models/NaiveBayes")
} }
2)集群模式
需要打包,然后通过spark-submit 提交到yarn client或者cluster中:
spark-submit --class myNaiveBayes --master yarn ScalaDemo.jar
import org.apache.spark.mllib.classification.{NaiveBayesModel, NaiveBayes}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.{SparkConf, SparkContext} object myNaiveBayes { def main(args:Array[String]) { val conf = new SparkConf().setAppName("NaiveBayes")
val sc = new SparkContext(conf) //initiated data and labeled
val data = sc.textFile("hdfs://nameservice1/user/hive/spark/data/sample_naive_bayes_data.txt")
val parsedData = data.map {
line =>
val parts = line.split(',')
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split( ' ').map(_.toDouble)) )
} // split data
val splits=parsedData.randomSplit(Array(0.6,0.4),seed=11L)
val training=splits(0)
val test=splits(1) //model and calculated precision & accuracy
val model=NaiveBayes.train(training,lambda=1.0,modelType="multinomial") val predictionAndLabel=test.map(p=>(model.predict(p.features),p.label))
val accuracy=1.0*predictionAndLabel.filter(x=>x._1==x._2).count()/test.count() //save and load model
model.save(sc,"hdfs://nameservice1/user/hive/spark/NaiveBayes/model")
val sameModel=NaiveBayesModel.load(sc,"hdfs://nameservice1/user/hive/spark/NaiveBayes/model")
} }
3)pyspark 代码实例
可以直接利用spark-submit提交,但注意无法到集群(cluster模式目前不支持独立集群、 mesos集群以及python应用程序)
spark-submit pyNaiveBayes.py
#-*- coding:utf-8 -*-
from pyspark.mllib.classification import NaiveBayes,NaiveBayesModel
from pyspark.mllib.linalg import Vectors
from pyspark.mllib.regression import LabeledPoint
from pyspark import SparkContext if __name__=="__main__":
sc=SparkContext(appName="PythonPi") def parseLine(line):
parts=line.split(',')
label=float(parts[0])
features=Vectors.dense([float(x) for x in parts[1].split(' ')])
return LabeledPoint(label,features)
data=sc.textFile("hdfs://nameservice1/user/hive/spark/data/sample_naive_bayes_data.txt").map(parseLine) training,test=data.randomSplit([0.6,0.4],seed=0)
model=NaiveBayes.train(training,1.0) predictionAndLabel=test.map(lambda p:(model.predict(p.features),p.label))
accuracy=1.0*predictionAndLabel.filter(lambda(x,v):x==v).count()/test.count() model.save(sc, "hdfs://nameservice1/user/hive/spark/PythonNaiveBayes/model")
sameModel = NaiveBayesModel.load(sc, "hdfs://nameservice1/user/hive/spark/PythonNaiveBayes/model")
}
3. Python
from sklearn import naive_bayes
import random ##拆分训练集和测试集
def SplitData(data,M,k,seed):
test=[]
train=[]
random.seed(seed)
for line in data:
if random.randint(0,M)==k:
test.append(''.join(line))
else:
train.append(''.join(line))
return train,test ##按分割符拆分X,Y
def parseData(data,delimiter1,delimiter2):
x=[]
y=[]
for line in data:
parts = line.split(delimiter1)
x1 = [float(a) for a in parts[1].split(delimiter2)]
y1 = float(parts[0])
##print x1,y1
x.append(x1)
y.append(y1)
return x,y ##读取数据
data=open('e:/java_ws/scalademo/data/sample_naive_bayes_data.txt','r')
training,test=SplitData(data,4,2,10)
trainingX,trainingY=parseData(training,',',' ')
testX,testY=parseData(test,',',' ') ##建模
model=naive_bayes.GaussianNB()
model.fit(trainingX,trainingY) ##评估
for b in testX:
print(model.predict(b),b)
[分类算法] :朴素贝叶斯 NaiveBayes的更多相关文章
- python机器学习(三)分类算法-朴素贝叶斯
一.概率基础 概率定义:概率定义为一件事情发生的可能性,例如,随机抛硬币,正面朝上的概率. 联合概率:包含多个条件,且所有条件同时成立的概率,记作:
- Spark朴素贝叶斯(naiveBayes)
朴素贝叶斯(Naïve Bayes) 介绍 Byesian算法是统计学的分类方法,它是一种利用概率统计知识进行分类的算法.在许多场合,朴素贝叶斯分类算法可以与决策树和神经网络分类算法想媲美,该算法能运 ...
- 分类算法之贝叶斯(Bayes)分类器
摘要:旁听了清华大学王建勇老师的 数据挖掘:理论与算法 的课,讲的还是挺细的,好记性不如烂笔头,在此记录自己的学习内容,方便以后复习. 一:贝叶斯分类器简介 1)贝叶斯分类器是一种基于统计的分类器 ...
- (ZT)算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)
https://www.cnblogs.com/leoo2sk/archive/2010/09/18/bayes-network.html 2.1.摘要 在上一篇文章中我们讨论了朴素贝叶斯分类.朴素贝 ...
- 机器学习集成算法--- 朴素贝叶斯,k-近邻算法,决策树,支持向量机(SVM),Logistic回归
朴素贝叶斯: 是使用概率论来分类的算法.其中朴素:各特征条件独立:贝叶斯:根据贝叶斯定理.这里,只要分别估计出,特征 Χi 在每一类的条件概率就可以了.类别 y 的先验概率可以通过训练集算出 k-近邻 ...
- 机器学习理论基础学习3.5--- Linear classification 线性分类之朴素贝叶斯
一.什么是朴素贝叶斯? (1)思想:朴素贝叶斯假设 条件独立性假设:假设在给定label y的条件下,特征之间是独立的 最简单的概率图模型 解释: (2)重点注意:朴素贝叶斯 拉普拉斯平滑 ...
- Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)
朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...
- tf-idf、朴素贝叶斯的短文本分类简述
朴素贝叶斯分类器(Naïve Bayes classifier)是一种相当简单常见但是又相当有效的分类算法,在监督学习领域有着很重要的应用.朴素贝叶斯是建立在“全概率公式”的基础下的,由已知的尽可能多 ...
- 吴裕雄--天生自然python机器学习:朴素贝叶斯算法
分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先 ...
随机推荐
- C语言关于利用sscanf实现字符串相加减
#include<stdio.h>#include<string.h>void main(){ int a; int b; char str1[10] = "9999 ...
- iOS开发之功能模块--模糊效果
1.先介绍一个好用的实现模糊效果的框架:https://github.com/YouXianMing/UIImageBlur 2.iOS8 中 UIVisualEffectView 模糊效果的使用 , ...
- 基于Windows 10平台的PM2.5检测器制作
本篇文章详细讲解了如何利用SDS011激光式PM2.5传感器.HC-06蓝牙模块和Windows 10设备完成一个简单的PM2.5检测器及其应用程序的开发.该检测器使用蓝牙完成数据输出,方便设备连接, ...
- backup, file manipulation operations (such as ALTER DATABASE ADD FILE) and encryption changes on a database must be serialized.
昨天在检查YourSQLDba备份时,发现有台数据库做备份时出现了下面错误信息,如下所示: <Exec> <ctx>yMaint.ShrinkLog</ctx> ...
- JS/JQuery针对不同类型元素的操作(radio、select、checkbox)
一.select下拉框 I:javascript方法 1:获取选中的值 F1: var myselect=document.getElementById("test");或者 ...
- JavaScript 省市级联效果
JavaScript 省市级联效果 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" " ...
- 一则因为numa引发的mysqldump hang住
新买的dell r430服务器,双CPU,64G内存,单CPU32g,swap 3G 出现故障现像:mysqldump时会hang住,innodb_buffer_pool_size = ...
- 长见识了,知道了collected和Graphite 这两个东东
今天下午的讨论会议中,听到了两个名词collected和Graphite这是神马东东,以前在bingo的时候也没听说过,开完会下去查了下.原来他两是监控系统的啊.以前也从来没做过系统监控方面的项目,这 ...
- 迅为-iMX6开发板 飞思卡尔iMX6Q开发板 工业级开发板
了解详情请点击迅为官网:http://topeetboard.com 迅为-i.MX6开发板是采用Freescale Cortex-A9 四核i.MX6Q处理器,主频1GHz,2G DDR3内存,16 ...
- 【小白的CFD之旅】10 敲门实例
按黄师姐的说法,做好第一个案例很重要.第一个案例既可以帮助理解CFD的工作流程,还可以帮助熟悉软件的操作界面. 黄师姐推荐的入门案例来自于ANSYS官方提供的培训教程,是一个关于交叉管内流动混合的案例 ...