带你读AI论文丨用于细粒度分类的Transformer结构—TransFG
摘要:本文解读了《TransFG: A Transformer Architecture for Fine-grained Recognition》,该论文针对细粒度分类任务,提出了对应的TransFG。
本文分享自华为云社区《论文解读系列二十:用于细粒度分类的Transformer结构—TransFG》,作者: BigDragon 。
论文地址:https://arxiv.org/abs/2103.07976
GitHub地址:https://github.com/TACJu/TransFG
近来,细粒度分类研究工作主要集中在如何定位差异性图片区域,以此提高网络捕捉微小差异的能力,而大部分工作主要通过使用不同的基模型来提取特定区域的特征,但这种方式会使流程复杂化,并从特定区域提取出大量冗余特征。因此,本文将所有原始注意力权重整合至注意力映射中,以此来指导模型高效地选取差异性图片区域,提出用于细粒度分类的Transformer结构TransFG。
图1 TransFG 结构
1 问题定义
细粒度分类任务主要以定位方法及特征编码方法为主,定位方法主要通过定位差异性局部区域来进行分类,而特征编码方法通过高维信息或寻找差异对之间关系来学习更多信息。TransFG通过整合注意力权重,计算区域的对比损失,来定位差异性局部区域,以此进行细粒度分类。
2 TransFG
2.1 图像序列化
原有Vision Transformer将图片分割为相互不重叠的patch,但这会损害局部相邻结构,可能会导致差异性图像区域被分离。因此,为解决这个问题,本文采用滑动窗口产生重叠patch,所产生的patch数量N根据公式(1)进行计算。其中,H、W分别为图像长宽,P为图像patch尺寸,S为滑动窗口步长。
2.2 Patch Embedding 和 Transformer Encoder
TransFG在Patch Embedding 和 Transformer Encoder两个模块遵循了原有ViT的形式,并未进行改动
2.3 局部选取模块(PSM)
图2 TransFG的注意力映射及所选取的token
首先假设模型中具有K个自注意首部,各层注意力权重如公式(2)所示,其中al指第l层K个首部注意力权重。
如公式(3)所示,将所有层的注意力权重进行矩阵相乘,afinal 捕捉了图像信息从输入到更深层的整个过程,相对于原有ViT,包含了更多信息,更加有助于选取具有识别性的区域
选取afinal中K个不同注意力首部的最大值A1、A2、…、AK,并将其与分类token进行拼接,其结果如公式(4)所示。该步骤不仅保留了全局信息,也让模型更加关注与不同类别之间的微小差异。
2.4 对比损失
如公式(5)所示,对比损失的目标是最小化不同类别对应的分类tokens的相似度,并最大化相同类别对应的分类tokens的相似度。其中,为减少loss被简单负样本影响,采用α来控制对loss有贡献的负样本对。
3 实验结果
TranFG在CUB-200-2011、Stanford Cars、Stanford Dogs、NABirds及iNat2017五个数据集进行了验证,并在CUB-200-2011、Standford Dogs、NABirds数据集上取得了SOTA结果。
4. 总结
- 在图像序列化部分,相对于采用非重叠的patch分割方法,采用重叠方法的精度提高了0.2%
- PSM整合所有注意力权重,保留全局信息,让模型更加关注于不同类别的微小差别,让模型精度提高了0.7%。
- 采用对比损失函数,能减少不同类别的相似度,提高相同类别的相似度,让模型精度提高了0.4%-0.5%。
参考文献
[1] He, Ju, et al. "TransFG: A Transformer Architecture for Fine-grained Recognition." arXiv preprint arXiv:2103.07976 (2021).
想了解更多的AI技术干货,欢迎上华为云的AI专区,目前有AI编程Python等六大实战营供大家免费学习
带你读AI论文丨用于细粒度分类的Transformer结构—TransFG的更多相关文章
- 带你读AI论文丨用于目标检测的高斯检测框与ProbIoU
摘要:本文解读了<Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection&g ...
- 带你读AI论文丨ACGAN-动漫头像生成
摘要:ACGAN-动漫头像生成是一个十分优秀的开源项目. 本文分享自华为云社区<[云驻共创]AI论文精读会:ACGAN-动漫头像生成>,作者:SpiderMan. 1.论文及算法介绍 1. ...
- 带你读AI论文丨S&P21 Survivalism: Living-Off-The-Land 经典离地攻击
摘要:这篇文章属于系统分析类的文章,通过详细的实验分析了离地攻击(Living-Off-The-Land)的威胁性和流行度,包括APT攻击中的利用及示例代码论证. 本文分享自华为云社区<[论文阅 ...
- 带你读AI论文丨RAID2020 Cyber Threat Intelligence Modeling GCN
摘要:本文提出了基于异构信息网络(HIN, Heterogeneous Information Network)的网络威胁情报框架--HINTI,旨在建模异构IOCs之间的相互依赖关系,以量化其相关性 ...
- 带你读AI论文丨LaneNet基于实体分割的端到端车道线检测
摘要:LaneNet是一种端到端的车道线检测方法,包含 LanNet + H-Net 两个网络模型. 本文分享自华为云社区<[论文解读]LaneNet基于实体分割的端到端车道线检测>,作者 ...
- 带你读AI论文丨针对文字识别的多模态半监督方法
摘要:本文提出了一种针对文字识别的多模态半监督方法,具体来说,作者首先使用teacher-student网络进行半监督学习,然后在视觉.语义以及视觉和语义的融合特征上,都进行了一致性约束. 本文分享自 ...
- 带你读AI论文:NDSS2020 UNICORN: Runtime Provenance-Based Detector
摘要:这篇文章将详细介绍NDSS2020的<UNICORN: Runtime Provenance-Based Detector for Advanced Persistent Threats& ...
- ACNet: 特别的想法,腾讯提出结合注意力卷积的二叉神经树进行细粒度分类 | CVPR 2020
论文提出了结合注意力卷积的二叉神经树进行弱监督的细粒度分类,在树结构的边上结合了注意力卷积操作,在每个节点使用路由函数来定义从根节点到叶子节点的计算路径,结合所有叶子节点的预测值进行最终的预测,论文的 ...
- 【带你读论文】向量表征经典之DeepWalk
摘要:详细讲解DeepWalk,通过随机游走的方式对网络化数据做一个表示学习,它是图神经网络的开山之作,借鉴了Word2vec的思想. 本文分享自华为云社区<[论文阅读] (25) 向量表征经典 ...
- 带你读Paper丨分析ViT尚存问题和相对应的解决方案
摘要:针对ViT现状,分析ViT尚存问题和相对应的解决方案,和相关论文idea汇总. 本文分享自华为云社区<[ViT]目前Vision Transformer遇到的问题和克服方法的相关论文汇总& ...
随机推荐
- 2022/7/26 暑期集训 pj组第6次%你赛
个人第3次 又是下午打,旁边那帮 不知好歹的 入门组小孩们又在吵吵... T1 老师是不是放反了? T1 是蓝题诶 理所应当地 跳过 然后就忘了写了,连样例也没打...样例可是有7分诶! 到现在也没写 ...
- 周藤 CSP-2023游记
Day -inf~Day -2 基本上是考试状态,每天我都是自己取随机题目做,不过也保证了落实量 每场模拟赛发挥基本上是不是特别稳定,考得好的时候AK了,考不好的时候只有300分,反正同届差不多第一吧 ...
- 手撕Vuex-实现actions方法
经过上一篇章介绍,完成了实现 mutations 的功能,那么接下来本篇将会实现 actions 的功能. 本篇我先介绍一下 actions 的作用,然后再介绍一下实现的思路,最后再实现代码. act ...
- CSS必学:元素之间的空白与行内块的幽灵空白问题
作者:WangMin 格言:努力做好自己喜欢的每一件事 CSDN原创文章 博客地址 WangMin 我们在开发的过程中,难免会出现一些难以预料的问题.那么其中,CSS空白现象就是非常常见的问题之一.虽 ...
- Python利用pandas进行数据合并
当使用Python中的pandas库时,merge函数是用于合并(或连接)两个数据框(DataFrame)的重要工具.它类似于SQL中的JOIN操作,允许你根据一个或多个键(key)将两个数据框连接起 ...
- 五分钟k8s实战-Istio 网关
在上一期 k8s-服务网格实战-配置 Mesh 中讲解了如何配置集群内的 Mesh 请求,Istio 同样也可以处理集群外部流量,也就是我们常见的网关. 其实和之前讲到的k8s入门到实战-使用Ingr ...
- 避免defer陷阱:拆解延迟语句,掌握正确使用方法
基本概念 Go语言的延迟语句defer有哪些特点?通常在什么情况下使用? Go语言的延迟语句(defer statement)具有以下特点: 延迟执行:延迟语句会在包含它的函数执行结束前执行,无论函数 ...
- 聊聊分布式 SQL 数据库Doris(二)
Doris中,Leader节点与非Leader节点和Observer节点之间的元数据高可用和一致性,是通过bdbje(全称:Oracle Berkeley DB Java Edition)的一致性和高 ...
- java笔记——面向对象
1.概述:面向对象是基于面向过程的编程思想 举例:把大象装进冰箱 2.开发:不断的创建对象,使用对象,指挥对象做事情 3.面向对象特征:封装 , 继承 , 多态 4.类和对象的关系: 类是一组相关的属 ...
- 使用Druid解析SQL实现血缘关系计算
import com.alibaba.druid.sql.SQLUtils; import com.alibaba.druid.sql.ast.SQLStatement; import com.ali ...