论文解读(TAT)《 Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers》
Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ]
论文信息
论文标题:Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers
论文作者:Hong Liu, Mingsheng Long, Jianmin Wang, Michael I. Jordan
论文来源:ICML 2019
论文地址:download
论文代码:download
1 Introduction
出发点:当使用对抗性训练的时候,因为抑制领域特定的变化时,会扭曲原始的特征分布;
事实:
Figure2(b):
- 使用源域和目标域的标记数据做测试,对比了使用对抗性训练(DANN、MCD)和监督训练(EestNet50)的测试误差;
- 结论:使用对抗性训练,减少特定领域的变化不可避免地打破了原始表示的判别结构;
Figure2(c):
计算特征表示层模型权重的奇异值分布;
结论:使用对抗性训练的奇异值分布更加重尾,表示条件更差和更扭曲的特征表示;
2 方法
2.1 模型框架
2.2 Adversarial Generation of Transferable Examples
现有的对抗性特征自适应方法通过学习领域不变表示来减少特定领域的变化。用 $f = F (x)$ 表示特征提取器,用 $d = D (f)$ 表示域鉴别器。$D$ 和 $F$ 形成一个双人极大极小博弈:$D$ 训练区分源和目标,而 $F$ 同时训练混淆 $D$。然而,这样种过程可能会恶化适应性。为保证适应性,本文提出修复特征表示,并生成可转移的例子来弥合域差距。具体地说,仍然训练域鉴别器 $D$ 通过以下损失函数来区分源域和目标域:
$\begin{aligned}\ell_{d}\left(\theta_{D}, \mathbf{f}\right)= & -\frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \log \left[D\left(\mathbf{f}_{s}^{(i)}\right)\right] \\& -\frac{1}{n_{t}} \sum_{i=1}^{n_{t}} \log \left[1-D\left(\mathbf{f}_{t}^{(i)}\right)\right] .\end{aligned} \quad\quad(1)$
分类器 $C$ 通过源域样本监督训练:
$\ell_{c}\left(\theta_{C}, \mathbf{f}\right)=\frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \ell_{c e}\left(C\left(\mathbf{f}_{s}^{(i)}\right), \mathbf{y}_{s}^{(i)}\right) \quad\quad(2)$
与现有的对抗性训练方法不同,本文通过在一种新的对抗性训练范式中生成的可转移样本来填补源域和目标域之间的差距,从而减少分布变化。
生成的可转移样本需要满足两个条件:
- 首先,可转移的样本应该有效地混淆域鉴别器 $D$,从而填补域间隙,桥接源域和目标域;
- 其次,可转移的样本应该能够欺骗类别分类器 $C$,这样它们就可以推动决策边界远离数据点;
因此,可转移的样本是通过 $\ell_{c}$ 和 $\ell_{d}$ 的联合损失而反向生成的:
$\begin{aligned}\mathbf{f}_{t^{k+1}} \leftarrow \mathbf{f}_{t^{k}} & +\beta \nabla_{\mathbf{f}_{t^{k}}} \ell_{d}\left(\theta_{D}, \mathbf{f}_{t^{k}}\right) \\& -\gamma \nabla_{\mathbf{f}_{t^{k}}} \ell_{2}\left(\mathbf{f}_{t^{k}}, \mathbf{f}_{t^{0}}\right) \\\end{aligned} \quad\quad(3)$
$\begin{aligned}\mathbf{f}_{s^{k+1}} \leftarrow \mathbf{f}_{s^{k}} & +\beta \nabla_{\mathbf{f}_{s}} \ell_{d}\left(\theta_{D}, \mathbf{f}_{s^{k}}\right) \\& -\gamma \nabla_{\mathbf{f}_{s}} \ell_{2}\left(\mathbf{f}_{s^{k}}, \mathbf{f}_{s^{0}}\right) \\& +\beta \nabla_{\mathbf{f}_{s k}} \ell_{c}\left(\theta_{C}, \mathbf{f}_{s^{k}}\right)\end{aligned} \quad\quad(4)$
其中,$\mathbf{f}_{t^{0}}=\mathbf{f}_{t}, \mathbf{f}_{s^{0}}=\mathbf{f}_{s}, \mathbf{f}_{t *}=\mathbf{f}_{t^{K}}, \mathbf{f}_{s *}=\mathbf{f}_{s^{K}}$。
此外,为避免生成的样本的发散,控制生成的样本与原始样本之间的 $\ell_{2}$-距离。
2.3 Adversarial Training with Transferable Examples
因此,对类别分类器 $C$ 的对抗性训练的损失函数表述如下:
$\begin{aligned}\ell_{c, a d v}\left(\theta_{C}, \mathbf{f}_{*}\right) & =\frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \ell_{c e}\left(C\left(\mathbf{f}_{s *}^{(i)}\right), \mathbf{y}_{s *}^{(i)}\right) \\& +\frac{1}{n_{t}} \sum_{i=1}^{n_{t}}\left|C\left(\left(\mathbf{f}_{t *}^{(i)}\right)\right)-C\left(\left(\mathbf{f}_{t}^{(i)}\right)\right)\right|\end{aligned} \quad\quad(5)$
与训练类别分类器类似,也用生成的可转移的例子来训练域鉴别器。这对于稳定对抗性训练过程很重要,否则生成的可转移的例子就会出现分歧。另一个关键的观点是利用这些可转移的例子来弥合领域上的差异。简单地在原始数据上欺骗域鉴别器并不能保证生成的示例可以从一个域转移到另一个域。因此,建议反向训练域鉴别器,以进一步区分可转移的例子从源和目标,使用以下损失:
$\begin{aligned}\ell_{d, a d v}\left(\theta_{D}, \mathbf{f}_{*}\right)= & -\frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \log \left[D\left(\mathbf{f}_{s *}^{(i)}\right)\right] \\& -\frac{1}{n_{t}} \sum_{i=1}^{n_{t}} \log \left[1-D\left(\mathbf{f}_{t *}^{(i)}\right)\right]\end{aligned} \quad\quad(6)$
我们共同最小化误差(1)和误差(6)来训练 $D$,最小化误差(2)和误差(5) 来训练 $C$,训练目标:
$\begin{array}{l}\underset{\theta_{D}, \theta_{C}}{\text{min}}\;\;\ell_{d}\left(\theta_{D}, \mathbf{f}\right)+\ell_{c}\left(\theta_{C}, \mathbf{f}\right) +\ell_{d, a d v}\left(\theta_{D}, \mathbf{f}_{*}\right)+\ell_{c, a d v}\left(\theta_{C}, \mathbf{f}_{*}\right) \end{array} \quad\quad(7)$
3 实验
论文解读(TAT)《 Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers》的更多相关文章
- 迁移学习(PAT)《Pairwise Adversarial Training for Unsupervised Class-imbalanced Domain Adaptation》
论文信息 论文标题:Pairwise Adversarial Training for Unsupervised Class-imbalanced Domain Adaptation论文作者:Weil ...
- 论文解读(ARVGA)《Learning Graph Embedding with Adversarial Training Methods》
论文信息 论文标题:Learning Graph Embedding with Adversarial Training Methods论文作者:Shirui Pan, Ruiqi Hu, Sai-f ...
- 论文解读( FGSM)《Adversarial training methods for semi-supervised text classification》
论文信息 论文标题:Adversarial training methods for semi-supervised text classification论文作者:Taekyung Kim论文来源: ...
- 论文解读(SR-GNN)《Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data》
论文信息 论文标题:Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data论文作者:Qi Zhu, ...
- 《C-RNN-GAN: Continuous recurrent neural networks with adversarial training》论文笔记
出处:arXiv: Artificial Intelligence, 2016(一年了还没中吗?) Motivation 使用GAN+RNN来处理continuous sequential data, ...
- 自监督学习(Self-Supervised Learning)多篇论文解读(下)
自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等 ...
- CVPR2019 | Mask Scoring R-CNN 论文解读
Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...
- Adversarial Training
原于2018年1月在实验室组会上做的分享,今天分享给大家,希望对大家科研有所帮助. 今天给大家分享一下对抗训练(Adversarial Training,AT). 为何要选择这个主题呢? 我们从上图的 ...
- Gaussian field consensus论文解读及MATLAB实现
Gaussian field consensus论文解读及MATLAB实现 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.Introduction ...
- CVPR2020 论文解读:少点目标检测
CVPR2020 论文解读:具有注意RPN和多关系检测器的少点目标检测 Few-Shot Object Detection with Attention-RPN and Multi-Relation ...
随机推荐
- 2023-03-16:给定一个由 0 和 1 组成的数组 arr ,将数组分成 3 个非空的部分, 使得所有这些部分表示相同的二进制值。 如果可以做到,请返回任何 [i, j],其中 i+1 < j
2023-03-16:给定一个由 0 和 1 组成的数组 arr ,将数组分成 3 个非空的部分, 使得所有这些部分表示相同的二进制值. 如果可以做到,请返回任何 [i, j],其中 i+1 < ...
- 2022-10-23:给你一个整数数组 nums 。如果 nums 的一个子集中, 所有元素的乘积可以表示为一个或多个 互不相同的质数 的乘积,那么我们称它为 好子集 。 比方说,如果 nums =
2022-10-23:给你一个整数数组 nums .如果 nums 的一个子集中, 所有元素的乘积可以表示为一个或多个 互不相同的质数 的乘积,那么我们称它为 好子集 . 比方说,如果 nums = ...
- Cesium中监听MOUSE_MOVE事件获取经纬度和高度
有时候在这个圆球上获取精确的经度纬度还不容易,特别是高度 还好在cesium提供了接口,看 let selft = this; const scene = this.viewer.scene; var ...
- HA高可用集群部署
HA高可用集群部署 高可用 ZooKeeper 集群部署 zookeeper安装部署 注意:需要安装jdk,但jdk已经在第4章装过,这里直接装zookeeper #解压并安装zookeeper [r ...
- Kubernetes(k8s)定时任务:CronJob
目录 一.系统环境 二.前言 三.Kubernetes CronJob简介 四.kubernetes CronJob和Linux crontab对比 五.CronJob表达式语法 六.创建CronJo ...
- NLM 公布了一个新的重新设计的 PubMed 数据库
经常使用 PubMed 的童鞋可能已经发现,美国国家医学图书馆(NLM)在今年 10 月份左右发布了一个新的重新设计的版本以取代 PubMed 数据库的现有版本,新版本现在已经上线,可以通过下面的链接 ...
- 苹果WWDC发布会总结
今年的全球开发者大会没有让人失望.在今天的主题演讲中,苹果首次展示了备受期待的混合现实耳机,证实了过去几个月出现的许多谣言. 虽然这次苹果的 Vision Pro耳机成为了焦点,但该公司还发布了一些其 ...
- shell编程-提取IP地址
1.使用cut文本处理工具提取 [root@hadoop129 scripts]# ifconfig ens33 | grep netmask | cut -d " " -f 10 ...
- 2023-06-13:统计高并发网站每个网页每天的 UV 数据,结合Redis你会如何实现?
2023-06-13:统计高并发网站每个网页每天的 UV 数据,结合Redis你会如何实现? 答案2023-06-13: 选用方案:HyperLogLog 如果统计 PV (页面浏览量)那非常好办,可 ...
- 【TVM教程】 自定义relay算子
本文地址:https://www.cnblogs.com/wanger-sjtu/p/15046641.html 本文为tvm 教程的翻译版.这部分介绍了如何在tvm中添加新的relay算子,具体的是 ...