• 最大的Qt4程序群(KDE4)采用cmake作为构建系统
  • Qt4的python绑定(pyside)采用了cmake作为构建系统
  • 开源的图像处理库 opencv 采用cmake 作为构建系统
  • ...

看来不学习一下cmake是不行了,一点一点来吧,找个最简单的C程序,慢慢复杂化,试试看:

例子一

单个源文件 main.c

例子二

==>分解成多个 main.c hello.h hello.c

例子三

==>先生成一个静态库,链接该库

例子四

==>将源文件放置到不同的目录

例子五

==>控制生成的程序和库所在的目录

例子六

==>使用动态库而不是静态库

例子一

一个经典的C程序,如何用cmake来进行构建程序呢?

//main.c
#include <stdio.h>
int main()
{
printf("Hello World!/n");
return 0;
}

编写一个 CMakeList.txt 文件(可看做cmake的工程文件):

project(HELLO)
set(SRC_LIST main.c)
add_executable(hello ${SRC_LIST})

然后,建立一个任意目录(比如本目录下创建一个build子目录),在该build目录下调用cmake

  • 注意:为了简单起见,我们从一开始就采用cmake的 out-of-source 方式来构建(即生成中间产物与源代码分离),并始终坚持这种方法,这也就是此处为什么单独创建一个目录,然后在该目录下执行 cmake 的原因
cmake .. -G"NMake Makefiles"
nmake

或者

cmake .. -G"MinGW Makefiles"
make

即可生成可执行程序 hello(.exe)

目录结构

+
|
+--- main.c
+--- CMakeList.txt
|
/--+ build/
|
+--- hello.exe

cmake 真的不太好用哈,使用cmake的过程,本身也就是一个编程的过程,只有多练才行。

我们先看看:前面提到的这些都是什么呢?

CMakeList.txt

第一行 project 不是强制性的,但最好始终都加上。这一行会引入两个变量

  • HELLO_BINARY_DIR 和 HELLO_SOURCE_DIR

同时,cmake自动定义了两个等价的变量

  • PROJECT_BINARY_DIR 和 PROJECT_SOURCE_DIR

因为是out-of-source方式构建,所以我们要时刻区分这两个变量对应的目录

可以通过message来输出变量的值

message(${PROJECT_SOURCE_DIR})

set 命令用来设置变量

add_exectuable 告诉工程生成一个可执行文件。

add_library 则告诉生成一个库文件。

  • 注意:CMakeList.txt 文件中,命令名字是不区分大小写的,而参数和变量是大小写相关的。

cmake命令

cmake 命令后跟一个路径(..),用来指出 CMakeList.txt 所在的位置。

由于系统中可能有多套构建环境,我们可以通过-G来制定生成哪种工程文件,通过 cmake -h 可得到详细信息。

要显示执行构建过程中详细的信息(比如为了得到更详细的出错信息),可以在CMakeList.txt内加入:

  • SET( CMAKE_VERBOSE_MAKEFILE on )

或者执行make时

  • $ make VERBOSE=1

或者

  • $ export VERBOSE=1
  • $ make

例子二

一个源文件的例子一似乎没什么意思,拆成3个文件再试试看:

  • hello.h 头文件
#ifndef DBZHANG_HELLO_
#define DBZHANG_HELLO_
void hello(const char* name);
#endif //DBZHANG_HELLO_
  • hello.c
#include <stdio.h>
#include "hello.h" void hello(const char * name)
{
printf ("Hello %s!/n", name);
}
  • main.c
#include "hello.h"
int main()
{
hello("World");
return 0;
}
  • 然后准备好CMakeList.txt 文件
project(HELLO)
set(SRC_LIST main.c hello.c)
add_executable(hello ${SRC_LIST})

执行cmake的过程同上,目录结构

+
|
+--- main.c
+--- hello.h
+--- hello.c
+--- CMakeList.txt
|
/--+ build/
|
+--- hello.exe

例子很简单,没什么可说的。

例子三

接前面的例子,我们将 hello.c 生成一个库,然后再使用会怎么样?

改写一下前面的CMakeList.txt文件试试:

project(HELLO)
set(LIB_SRC hello.c)
set(APP_SRC main.c)
add_library(libhello ${LIB_SRC})
add_executable(hello ${APP_SRC})
target_link_libraries(hello libhello)

和前面相比,我们添加了一个新的目标 libhello,并将其链接进hello程序

然后想前面一样,运行cmake,得到

+
|
+--- main.c
+--- hello.h
+--- hello.c
+--- CMakeList.txt
|
/--+ build/
|
+--- hello.exe
+--- libhello.lib

里面有一点不爽,对不?

  • 因为我的可执行程序(add_executable)占据了 hello 这个名字,所以 add_library 就不能使用这个名字了
  • 然后,我们去了个libhello 的名字,这将导致生成的库为 libhello.lib(或 liblibhello.a),很不爽
  • 想生成 hello.lib(或libhello.a) 怎么办?

添加一行

set_target_properties(libhello PROPERTIES OUTPUT_NAME "hello")

就可以了

例子四

在前面,我们成功地使用了库,可是源代码放在同一个路径下,还是不太正规,怎么办呢?分开放呗

我们期待是这样一种结构

+
|
+--- CMakeList.txt
+--+ src/
| |
| +--- main.c
| /--- CMakeList.txt
|
+--+ libhello/
| |
| +--- hello.h
| +--- hello.c
| /--- CMakeList.txt
|
/--+ build/

哇,现在需要3个CMakeList.txt 文件了,每个源文件目录都需要一个,还好,每一个都不是太复杂

  • 顶层的CMakeList.txt 文件
project(HELLO)
add_subdirectory(src)
add_subdirectory(libhello)
  • src 中的 CMakeList.txt 文件
include_directories(${PROJECT_SOURCE_DIR}/libhello)
set(APP_SRC main.c)
add_executable(hello ${APP_SRC})
target_link_libraries(hello libhello)
  • libhello 中的 CMakeList.txt 文件
set(LIB_SRC hello.c)
add_library(libhello ${LIB_SRC})
set_target_properties(libhello PROPERTIES OUTPUT_NAME "hello")

恩,和前面一样,建立一个build目录,在其内运行cmake,然后可以得到

  • build/src/hello.exe
  • build/libhello/hello.lib

回头看看,这次多了点什么,顶层的 CMakeList.txt 文件中使用 add_subdirectory 告诉cmake去子目录寻找新的CMakeList.txt 子文件

在 src 的 CMakeList.txt 文件中,新增加了include_directories,用来指明头文件所在的路径。

例子五

前面还是有一点不爽:如果想让可执行文件在 bin 目录,库文件在 lib 目录怎么办?

就像下面显示的一样:

   + build/
|
+--+ bin/
| |
| /--- hello.exe
|
/--+ lib/
|
/--- hello.lib
  • 一种办法:修改顶级的 CMakeList.txt 文件
project(HELLO)
add_subdirectory(src bin)
add_subdirectory(libhello lib)

不是build中的目录默认和源代码中结构一样么,我们可以指定其对应的目录在build中的名字。

这样一来:build/src 就成了 build/bin 了,可是除了 hello.exe,中间产物也进来了。还不是我们最想要的。

  • 另一种方法:不修改顶级的文件,修改其他两个文件

src/CMakeList.txt 文件

include_directories(${PROJECT_SOURCE_DIR}/libhello)
#link_directories(${PROJECT_BINARY_DIR}/lib)
set(APP_SRC main.c)
set(EXECUTABLE_OUTPUT_PATH ${PROJECT_BINARY_DIR}/bin)
add_executable(hello ${APP_SRC})
target_link_libraries(hello libhello)

libhello/CMakeList.txt 文件

set(LIB_SRC hello.c)
add_library(libhello ${LIB_SRC})
set(LIBRARY_OUTPUT_PATH ${PROJECT_BINARY_DIR}/lib)
set_target_properties(libhello PROPERTIES OUTPUT_NAME "hello")

例子六

在例子三至五中,我们始终用的静态库,那么用动态库应该更酷一点吧。 试着写一下

如果不考虑windows下,这个例子应该是很简单的,只需要在上个例子的 libhello/CMakeList.txt 文件中的add_library命令中加入一个SHARED参数:

add_library(libhello SHARED ${LIB_SRC})

可是,我们既然用cmake了,还是兼顾不同的平台吧,于是,事情有点复杂:

  • 修改 hello.h 文件
#ifndef DBZHANG_HELLO_
#define DBZHANG_HELLO_
#if defined _WIN32
#if LIBHELLO_BUILD
#define LIBHELLO_API __declspec(dllexport)
#else
#define LIBHELLO_API __declspec(dllimport)
#endif
#else
#define LIBHELLO_API
#endif
LIBHELLO_API void hello(const char* name);
#endif //DBZHANG_HELLO_
  • 修改 libhello/CMakeList.txt 文件
set(LIB_SRC hello.c)
add_definitions("-DLIBHELLO_BUILD")
add_library(libhello SHARED ${LIB_SRC})
set(LIBRARY_OUTPUT_PATH ${PROJECT_BINARY_DIR}/lib)
set_target_properties(libhello PROPERTIES OUTPUT_NAME "hello")

恩,剩下来的工作就和原来一样了。

转自:http://blog.csdn.net/dbzhang800/article/details/6314073

cmake 学习笔记(一)的更多相关文章

  1. cmake学习笔记(五)

    在cmake 学习笔记(三) 中简单学习了 find_package 的 model 模式,在cmake 学习笔记(四)中了解一个CMakeCache相关的东西.但靠这些知识还是不能看懂PySide使 ...

  2. cmake 学习笔记(三)

    转自:http://blog.csdn.net/dbzhang800/article/details/6329314 接前面的 Cmake学习笔记(一) 与 Cmake学习笔记(二) 继续学习 cma ...

  3. cmake 学习笔记(二)

    在 Cmake学习笔记一 中通过一串小例子简单学习了cmake 的使用方式. 这次应该简单看看语法和常用的命令了. 简单的语法 注释 # 我是注释 命令语法 COMMAND(参数1 参数2 ...) ...

  4. cmake 学习笔记(三) (转)

    接前面的 Cmake学习笔记(一) 与 Cmake学习笔记(二) 继续学习 cmake 的使用. 学习一下cmake的 finder. finder是神马东西? 当编译一个需要使用第三方库的软件时,我 ...

  5. CMake学习笔记四:usb_cam的CMakeLists解析

    最近在学习cmake,在完整看了<cmake实践>一书后,跟着书上例程敲了跑了一遍,也写了几篇相关读书笔记,算是勉强基本入门了.所以找了usb_cam软件包的CMakeLists.txt来 ...

  6. cmake 学习笔记(六)

    希望这是现阶段阻碍阅读shiboken和PySide源码的涉及cmake的最后一个障碍 ^ _^ 学习 cmake 的单元测试部分 ctest. 简单使用 最简单的使用ctest的方法,就是在 CMa ...

  7. cmake 学习笔记(四)

    接前面的一二三,学习一下 CMakeCache.txt 相关的东西. CMakeCache.txt 可以将其想象成一个配置文件(在Unix环境下,我们可以认为它等价于传递给configure的参数). ...

  8. cmake学习笔记之add_library、target_link_libraries和link_directories

    cmake是Linux(这里默认是Ubuntu系统)下常使用的编译C++的工具,而使用cmake就需要先在CmakeLists.txt文件中对编译规则进行.这里介绍常用的三种指令add_library ...

  9. CMake学习笔记

    C++开发者必备技能CMake  先简单介绍一下,CMake是一个跨平台的编译工具,它可以根据不用的平台,不同的编译环境,生成不同的MakeFile,从而控制编译的过程. 使用CMake的步骤: 1. ...

随机推荐

  1. 目前网络上大部分的网站都是由ASP或PHP开发,并且java平台的软件购买成本不适合中小企业客户,一般适用于银行、国家安全等行业领域

    目前网络上大部分的网站都是由ASP或PHP开发,并且java平台的软件购买成本不适合中小企业客户,一般适用于银行.国家安全等行业领域. 要求建设开发大型复杂的网站,但仅有一个idea,不能够提供网站详 ...

  2. python+opencv

    $cd numpy $ sudo python setup.py build $ sudo python setup.py installRunning from numpy source direc ...

  3. Spring data redis的一个bug

    起因 前两天上线了一个新功能,导致线上业务的缓存总是无法更新,报错也是非常奇怪,redis.clients.jedis.exceptions.JedisConnectionException: Unk ...

  4. levelDB缓存实现

    leveldb的缓存机制 leveldb采用LRU机制, 利用键的哈希值前n位作为索引, 将要插入的键值对分派到指定的缓存区, 当缓存区的使用率大于总容量后, 优先淘汰最近最少使用的缓存, 独立的缓存 ...

  5. Onvif协议

    ONVIF致力于通过全球性的开放界面标准来推进网络视频在安防市场的应用,这一接口界面标准将确保不同厂商生产的网络视频监控产品具有互通性.2008年11月,论坛正式发布了ONVIF第一版规范ONVIF核 ...

  6. BZOJ 2015: [Usaco2010 Feb]Chocolate Giving( 最短路 )

    裸最短路.. ------------------------------------------------------------------------------------ #include ...

  7. hdu 4782 Beautiful Soupz

    模拟.其实这题就是题目比较长而已...读完题目就差不多了.tag直接读就可以了,题目说了不用修改.然后整个题目就是让求text部分,严格按空格分开.注意每行前面空格个数. #include<al ...

  8. werkzeug中服务器处理请求的实现

    当成功建立好服务器后,接下来就是等待请求并处理请求通过路由分配给相应的视图函数了,以下是函数调用过程 -> self._handle_request_noblock() /usr/lib/pyt ...

  9. python成长之路——第八天

    pickle,load :切记:如果load的是个对象的话,必须导入构建这个对象的类     封装 类和对象的关系: 每个对象里都有一个类对象指针,指向类     继承:支持单继承和多继承 print ...

  10. python实现单向链表

    #Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self ...