bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp
1047: [HAOI2007]理想的正方形
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2369 Solved: 1266
[Submit][Status][Discuss]
Description
有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
Input
第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。
Output
仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。
Sample Input
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
Sample Output
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const int mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
int n, m, k;
const int maxn = ;
int a[maxn][maxn], f[maxn][maxn], g[maxn][maxn], tmp[maxn][maxn];
deque <int> q;
void get_max() {
for(int i = ; i<=n; i++) {
for(int j = ; j<=m; j++) {
tmp[i][j] = a[i][j];
while(!q.empty()&&j-q.front()+>k)
q.pop_front();
if(!q.empty()) {
tmp[i][j] = max(tmp[i][j], a[i][q.front()]);
}
while(!q.empty() && a[i][j]>a[i][q.back()]) {
q.pop_back();
}
q.push_back(j);
}
while(!q.empty())
q.pop_back();
}
for(int j = ; j<=m; j++) {
for(int i = ; i<=n; i++) {
f[i][j] = tmp[i][j];
while(!q.empty()&&i-q.front()+>k)
q.pop_front();
if(!q.empty()) {
f[i][j] = max(f[i][j], tmp[q.front()][j]);
}
while(!q.empty() && tmp[i][j]>tmp[q.back()][j])
q.pop_back();
q.push_back(i);
}
while(!q.empty())
q.pop_back();
}
}
void get_min() {
for(int i = ; i<=n; i++) {
for(int j = ; j<=m; j++) {
tmp[i][j] = a[i][j];
while(!q.empty()&&j-q.front()+>k)
q.pop_front();
if(!q.empty()) {
tmp[i][j] = min(tmp[i][j], a[i][q.front()]);
}
while(!q.empty() && a[i][j]<a[i][q.back()]) {
q.pop_back();
}
q.push_back(j);
}
while(!q.empty())
q.pop_back();
}
for(int j = ; j<=m; j++) {
for(int i = ; i<=n; i++) {
g[i][j] = tmp[i][j];
while(!q.empty()&&i-q.front()+>k)
q.pop_front();
if(!q.empty()) {
g[i][j] = min(g[i][j], tmp[q.front()][j]);
}
while(!q.empty() && tmp[i][j]<tmp[q.back()][j])
q.pop_back();
q.push_back(i);
}
while(!q.empty())
q.pop_back();
}
}
int main()
{
cin>>n>>m>>k;
for(int i = ; i<=n; i++) {
for(int j = ; j<=m; j++) {
scanf("%d", &a[i][j]);
}
}
get_max();
get_min();
int ans = 2e9+;
for(int i = ; i<=n; i++) {
for(int j = ; j<=m; j++) {
if(i<k||j<k)
continue;
ans = min(ans, f[i][j]-g[i][j]);
}
}
cout<<ans<<endl;
return ;
}
bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp的更多相关文章
- BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )
单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...
- BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞
题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...
- BZOJ1047: [HAOI2007]理想的正方形 [单调队列]
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2857 Solved: 1560[Submit][St ...
- P2216 [HAOI2007]理想的正方形 (单调队列)
题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...
- [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】
题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...
- bzoj 1047: [HAOI2007]理想的正方形【单调队列】
没有复杂结构甚至不长但是写起来就很想死的代码类型 原理非常简单,就是用先用单调队列处理出mn1[i][j]表示i行的j到j+k-1列的最小值,mx1[i][j]表示i行的j到j+k-1列的最大值 然后 ...
- BZOJ 1047: [HAOI2007]理想的正方形
题目 单调队列是个很神奇的东西,我以前在博客写过(吧) 我很佩服rank里那些排前几的大神,700ms做了时限10s的题,简直不能忍.(但是我还是不会写 我大概一年半没写单调队列,也有可能根本没有写过 ...
- Luogu 2216[HAOI2007]理想的正方形 - 单调队列
Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...
- [HAOI2007] 理想的正方形 (单调队列)
题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...
随机推荐
- HDU 4914 Linear recursive sequence(矩阵乘法递推的优化)
题解见X姐的论文 矩阵乘法递推的优化.仅仅是mark一下. .
- SQL 常用基础语句
1.SQL SELECT 语句 语法:SELECT 列名称 FROM 表名称 2.SQL SELECT DISTINCT 语句 语法:SELECT DISTINCT 列名 ...
- history.js 一个无刷新就可改变浏览器栏地址的插件(不依赖jquery)
示例: http://browserstate.github.io/history.js/demo/ 简介 HTML4有一些对浏览历史的前进后退API的支持如: window.hist ...
- IE 11 无法访问某些不兼容性视图的解决方法
今天下午部署公司的项目时,用IE 11只能加载到JSP页面的静态元素,其中下拉文本框的信息获取不到, 后来,发现是IE 11不兼容的原因,于是,在菜单条“工具”——“兼容性视图设置”,将不兼容页面的网 ...
- button变成href (即按钮超链效果)
法一: 这种方法适合做单纯的HTML静态页面,因为它只有button的显示效果,但不能真的跳转.貌似是鸡肋,没多大用. 法二: 1.新打开一个页面 2.本页打开 在超链中实现打开新页面用targe ...
- shell查看并修复网络连接
1. shell监控网卡状态,故障时自动重启网卡 http://blog.slogra.com/post-425.html cat fix_eth0.sh #!/bin/bash check_and ...
- oracle中区分audit_file_dest, background_dump_dest, core_dump_dest, user_dump_dest
一般在$ORACLE_HOME\admin\{SID}目录下: audit_file_dest = /u01/app/oracle/admin/{SID}/adump ...
- 解决 winedit 打开tex文件 reading error
从网上下载的论文模板,发现直接双击打开.tex文件(默认关联用winedit打开)时会出现reading error,然后看不到任何文字(网上有人讨论打开是乱码的问题,但是我的是完全看不到任何东西), ...
- [置顶] What is the difference between Category and Class Extension?
细心的人会发现当我们new 一个文件的时候会发现下图的部分. 但是这个问题来了Category 和 Extension 就近又什么区别呢? 1:什么是Category? 实现这样一种场景,当我们用我们 ...
- Java中synchronized注意点
之前一直以为 synchronized 加在方法前面就只有一个线程能访问了,项目中碰到一个问题,一个类的不同对象,同时访问加了 synchronized的方法 同样是可以访问的,那是因为 synchr ...