Scrambled Polygon
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 7799   Accepted: 3707

Description

A closed polygon is a figure bounded by a finite number of line segments. The intersections of the bounding line segments are called the vertices of the polygon. When one starts at any vertex of a closed polygon and traverses each bounding line segment exactly once, one comes back to the starting vertex. 
A closed polygon is called convex if the line segment joining any two points of the polygon lies in the polygon. Figure 1 shows a closed polygon which is convex and one which is not convex. (Informally, a closed polygon is convex if its border doesn't have any "dents".) The subject of this problem is a closed convex polygon in the coordinate plane, one of whose vertices is the origin (x = 0, y = 0). Figure 2 shows an example. Such a polygon will have two properties significant for this problem. 
The first property is that the vertices of the polygon will be confined to three or fewer of the four quadrants of the coordinate plane. In the example shown in Figure 2, none of the vertices are in the second quadrant (where x < 0, y > 0). 
To describe the second property, suppose you "take a trip" around the polygon: start at (0, 0), visit all other vertices exactly once, and arrive at (0, 0). As you visit each vertex (other than (0, 0)), draw the diagonal that connects the current vertex with (0, 0), and calculate the slope of this diagonal. Then, within each quadrant, the slopes of these diagonals will form a decreasing or increasing sequence of numbers, i.e., they will be sorted. Figure 3 illustrates this point.  

Input

The input lists the vertices of a closed convex polygon in the plane. The number of lines in the input will be at least three but no more than 50. Each line contains the x and y coordinates of one vertex. Each x and y coordinate is an integer in the range -999..999. The vertex on the first line of the input file will be the origin, i.e., x = 0 and y = 0. Otherwise, the vertices may be in a scrambled order. Except for the origin, no vertex will be on the x-axis or the y-axis. No three vertices are colinear.

Output

The output lists the vertices of the given polygon, one vertex per line. Each vertex from the input appears exactly once in the output. The origin (0,0) is the vertex on the first line of the output. The order of vertices in the output will determine a trip taken along the polygon's border, in the counterclockwise direction. The output format for each vertex is (x,y) as shown below.

Sample Input

0 0
70 -50
60 30
-30 -50
80 20
50 -60
90 -20
-30 -40
-10 -60
90 10

Sample Output

(0,0)
(-30,-40)
(-30,-50)
(-10,-60)
(50,-60)
(70,-50)
(90,-20)
(90,10)
(80,20)
(60,30)
题意:给你一系列点,让输出一个凸多边形的各点,把斜率从大到小排序就好了;
代码;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x);
struct Node{
int x,y;
/*friend bool operator < (Node a,Node b){
if(a.x!=b.x)return a.x<b.x;
else return a.y<b.y;
}*/
}dt[100010];
int cross(Node a,Node b){
return a.x*b.y-a.y*b.x;
}
int cmp(Node a,Node b){
if(cross(a,b)>0)return 1;
else return 0;
}
int main(){
int k=0;
while(~scanf("%d%d",&dt[k].x,&dt[k].y))k++;
sort(dt+1,dt+k,cmp);
for(int i=0;i<k;i++)printf("(%d,%d)\n",dt[i].x,dt[i].y);
return 0;
}

  

Scrambled Polygon(斜率排序)的更多相关文章

  1. poj 2007 Scrambled Polygon 极角排序

    /** 极角排序输出,,, 主要atan2(y,x) 容易失精度,,用 bool cmp(point a,point b){ 5 if(cross(a-tmp,b-tmp)>0) 6 retur ...

  2. Scrambled Polygon(凸多边形,斜率)

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7805   Accepted: 3712 ...

  3. POJ 2007 Scrambled Polygon [凸包 极角排序]

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8636   Accepted: 4105 ...

  4. POJ 2007 Scrambled Polygon 凸包

    Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7214   Accepted: 3445 ...

  5. 【BZOJ1007】【HNOI2008】水平可见直线(斜率排序+单调栈)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2605  Solved: 914[Submit][Stat ...

  6. poj 2007 Scrambled Polygon(极角排序)

    http://poj.org/problem?id=2007 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6701   A ...

  7. 简单几何(极角排序) POJ 2007 Scrambled Polygon

    题目传送门 题意:裸的对原点的极角排序,凸包貌似不行. /************************************************ * Author :Running_Time ...

  8. POJ 2007 Scrambled Polygon (简单极角排序)

    题目链接 题意 : 对输入的点极角排序 思路 : 极角排序方法 #include <iostream> #include <cmath> #include <stdio. ...

  9. POJ 2007 Scrambled Polygon(简单极角排序)

    水题,根本不用凸包,就是一简单的极角排序. 叉乘<0,逆时针. #include <iostream> #include <cstdio> #include <cs ...

随机推荐

  1. struts1标签(html:text)

    这个标签可能是出现频率最高的标签了. 功能: <html:text/>产生HTML语句: <input type=”text”…> 也就是在页面上产生input类型的显示标签. ...

  2. jQuery入门第三

    jQuery入门第三 1.HTML 2.CSS 衣服 3.javascript 可以动的人 4.DOM 编程 对html文档的节点操作 5.jQuery 对 javascript的封装 简练的语法 复 ...

  3. Android多线程任务优化1:探讨AsyncTask的缺陷

     AsyncTask还有别的缺陷,在生成listview的时候,如果adapter里面的count动态改变的话,不能使用AsyncTask,只能使用Thread+Handler,否则会出现如下错误 j ...

  4. HDU 5828 Rikka with Sequence(线段树)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5828 [题目大意] 给出一个数列,要求支持区间加法,区间开方和区间和查询操作. [题解] 考虑开方 ...

  5. 有关Gcd,Lcm的一点小结论

    先介绍两个: 大数的Gcd Stein+欧几里德 function stein(a,b:int64):int64; begin if a<b then exit(stein(b,a)); the ...

  6. 黑马程序员_<<StringBuffer,包装类>>

    --------------------ASP.Net+Android+IOS开发..Net培训.期待与您交流! -------------------- 1. StringBuffer 1.概述 S ...

  7. MyEclipse13中修改Servlet.java源代码

    Servlet.java源代码想要修改的步骤,与低版本的不同废话少说,直接来步骤: 1,在myEclipse的安装目录中搜索com.genuitec.eclipse.wizards文件,如图:选择co ...

  8. hdu 1507 Largest Rectangle in a Histogram 动态规划计算最大面积

    记录动态规划dpl,dpr,分辨记录i左面的比i大的,右面比i大的,然后(dpr[i]-dpl[i]+1)*h[i]得出长度 动态转移方程while(temp>1 && h[te ...

  9. ASP.NET MVC导入excel到数据库

    MVC导入excel和webform其实没多大区别,以下为代码: 视图StationImport.cshtml的代码: @{ ViewBag.Title = "StationImport&q ...

  10. Microsoft SQL Server 数据库 错误号大全

    panchzh :Microsoft SQL Server 数据库 错误号大全0 操作成功完成. 1 功能错误. 2 系统找不到指定的文件. 3 系统找不到指定的路径. 4 系统无法打开文件. 5 拒 ...