How many integers can you find

Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5664    Accepted Submission(s): 1630

Problem Description
  Now
you get a number N, and a M-integers set, you should find out how many
integers which are small than N, that they can divided exactly by any
integers in the set. For example, N=12, and M-integer set is {2,3}, so
there is another set {2,3,4,6,8,9,10}, all the integers of the set can
be divided exactly by 2 or 3. As a result, you just output the number 7.
 
Input
  There
are a lot of cases. For each case, the first line contains two integers
N and M. The follow line contains the M integers, and all of them are
different from each other. 0<N<2^31,0<M<=10, and the M
integer are non-negative and won’t exceed 20.
 
Output
  For each case, output the number.
 
Sample Input
12 2
2 3
 
Sample Output
7
 
Author
wangye
题意:在m个数的集合中,问在小于n的范围内有多少个数能整除m个数的集合中的数。
收获: 容斥原理两种表示方法: 1.二进制, 2.递归
1.二进制
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <ctime>
#include <cmath>
#include <string>
#include <cstring>
#include <stack>
#include <queue>
#include <list>
#include <vector>
#include <map>
#include <set>
using namespace std; const int INF=0x3f3f3f3f;
const double eps=1e-;
const double PI=acos(-1.0);
#define maxn 500
__int64 k[maxn];
__int64 gcd(__int64 b,__int64 a)
{
return a==?b:gcd(a,b%a);
}
int main()
{
int n, m;
while(~scanf("%d%d", &n, &m))
{
int t;
n--;
int cnt = ;
for(int i = ; i < m; i++)
{
scanf("%d", &t);
if(t> && t < n)
k[cnt++] = t;
}
__int64 ans = ;
for(int i = ; i < <<cnt; i++)
{
int num = ;
__int64 lcm = ;
for(int j = ; j < cnt; j++)
{
if(i & ( << j))
{
num++;
lcm = k[j]/gcd(k[j], lcm) * lcm;
}
}
if(num & )
ans += n/lcm;
else
ans -= n/lcm;
}
printf("%I64d\n", ans);
}
return ;
}

2. 递归

#include<iostream>
#include<cstdio>
#include<algorithm> using namespace std;
__int64 a[];
int n,m;
//cur表示
__int64 sum=;
__int64 gcd(__int64 b,__int64 a)
{
return a==?b:gcd(a,b%a);
//while()
}//最小公倍数
void dfs(int cur,__int64 lcm,int id)//容斥原理公式
{
//lcm=lcm/gcd(lcm,a[cur])*a[cur];
lcm=a[cur]/gcd(a[cur],lcm)*lcm;
if(id&)//运用了快速幂的方法判断奇偶
sum+=(n-)/lcm;
else
sum-=(n-)/lcm;
// cout<<"id = "<<id<<" : "<<sum<<endl;
for(int i=cur+;i<=m;i++)
dfs(i,lcm,id+);
}
int main()
{
int t;
while(~scanf("%d%d",&n,&t))
{
int i,x;
m=;
for(i=;i<=t;i++)
{
scanf("%d",&x);
if(x)
{
a[++m]=x;
}
}
sum=;
for(i=;i<=m;i++)
dfs(i,a[i],);
printf("%I64d\n",sum);//容斥原理公式
// cout<<sum<<endl;
}
return ;
}

HDU 1796 Howmany integers can you find (容斥原理)的更多相关文章

  1. HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举)

    HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举) 题意分析 求在[1,n-1]中,m个整数的倍数共有多少个 与 UVA.10325 ...

  2. HDU 1796 How many integers can you find (状态压缩 + 容斥原理)

    题目链接 题意 : 给你N,然后再给M个数,让你找小于N的并且能够整除M里的任意一个数的数有多少,0不算. 思路 :用了容斥原理 : ans = sum{ 整除一个的数 } - sum{ 整除两个的数 ...

  3. HDU 1796How many integers can you find(容斥原理)

    How many integers can you find Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d ...

  4. HDU 1796 容斥原理 How many integers can you find

    题目连接   http://acm.hdu.edu.cn/showproblem.php?pid=1796 处男容斥原理  纪念一下  TMD看了好久才明白DFS... 先贴代码后解释 #includ ...

  5. HDU 1796 How many integers can you find(容斥原理)

    题目传送:http://acm.hdu.edu.cn/diy/contest_showproblem.php?cid=20918&pid=1002 Problem Description    ...

  6. HDU 1796 How many integers can you find(容斥原理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  7. HDU 1796 How many integers can you find(容斥原理+二进制/DFS)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  8. [容斥原理] hdu 1796 How many integers can you find

    题意: 给一个N.然后给M个数,问1~N-1里面有多少个数能被这M个数中一个或多个数整除. 思路: 首先要N-- 然后对于每一个数M 事实上1~N-1内能被其整除的 就是有(N-1)/M[i]个 可是 ...

  9. HDU 1796 How many integers can you find(容斥原理)

    题意 就是给出一个整数n,一个具有m个元素的数组,求出1-n中有多少个数至少能整除m数组中的一个数 (1<=n<=10^18.m<=20) 题解 这题是容斥原理基本模型. 枚举n中有 ...

随机推荐

  1. 用日志文件备份sqlserver

    USE [TestDB] GO SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO )) as ) ),),)),)+ '.bak' backup dat ...

  2. 456. 132 Pattern

    456. 132 Pattern Given an array of integers a1, a2, a3-an, judge if there exists the 132 pattern. 13 ...

  3. iOS学习之iOS沙盒(sandbox)机制和文件操作(一)

    1.iOS沙盒机制 iOS应用程序仅仅能在为该改程序创建的文件系统中读取文件,不能够去其他地方訪问,此区域被成为沙盒,所以全部的非代码文件都要保存在此,比如图像,图标,声音,映像,属性列表,文本文件等 ...

  4. cocos2d-x-2.2.5项目创建--命令行创建

    Gavin:downloads DavidLik$ cd cocos2d-x-2.2.5/ Gavin:cocos2d-x-2.2.5 DavidLik$ cd tools/ Gavin:tools ...

  5. RMAN备份各种物理文件

    RMAN运行脚本的方式:RMAN TARGET / @backup_db.rmanRMAN TARGET / cmdfile=backup_db.rman在RMAN中执行操作系统中保存的脚本:RMAN ...

  6. C#.NET面向对象(语法点)

    一.继承 C#中继承的规则 1:继承是可传递的 A:B   B:C 2:派生类应当是对基类的扩展.派生类可以添加新的成员,但不能除去已经继承的成员的定义. 3:构造函数和析构函数不能被继承 4:如果派 ...

  7. JSP进阶 之 SimpleTagSupport 开发自定义标签

    绝大部分 Java 领域的 MVC 框架,例如 Struts.Spring MVC.JSF 等,主要由两部分组成:控制器组件和视图组件.其中视图组件主要由大量功能丰富的标签库充当.对于大部分开发者而言 ...

  8. Hello又大了一岁

    时间就这样子过了一年一年一年一年一年...一年一年一年......... 以往每年的生日,都习惯安静的猫在一个地方.时间流逝,更像是一种默默的悼念. 也许从28岁开始,我得习惯用逗比的心态欢迎.长大的 ...

  9. hibernate联合主键注解配置

    在网上看到好多方法,结果拿来用还是出现了一些问题.现在整理一下 1.主键类 import javax.persistence.Column; public class UserRoleUionPK i ...

  10. BottomSheetBehavior 之 java.lang.IllegalArgumentException: The view is not associated with BottomSheetBehavior

    AndroidRuntime: FATAL EXCEPTION: main Process: me.chunsheng.uberdriver, PID: 13674 java.lang.Runtime ...