题意:一个树,a b c 代表a--b边的权值为c。CHANGE x y  把输入的第x条边的权值改为y,QUERY x y 查询x--y路径上边的权值的最大值。

第一次写树链剖分,其实树链剖分只能说是一种思想。树链剖分  就是 先选择从根节点到叶子节点的最长的路径的权值对应到线段树上,然后从一个子树的根节点到叶子的最长路径的权值对应到线段树上这样直到把所有的点都处理了,然后就是线段树区间查询最值了。

具体可以看这个博客。http://blog.sina.com.cn/s/blog_6974c8b20100zc61.html

 #include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const double eps = 1e-;
const int maxn = 1e4+;
int top[maxn],fa[maxn],son[maxn],dep[maxn],siz[maxn],seg_tree[maxn<<],head[maxn],pos[maxn];
int edge,tot;
struct
{
int to,next;
}e[maxn<<];
void add(int x,int y)
{
e[edge].to = y;
e[edge].next = head[x];
head[x] = edge++;
} void dfs(int r)
{
siz[r] = ;
son[r] = ;
for (int i = head[r]; i > ; i = e[i].next)
if (fa[r] != e[i].to)
{
dep[e[i].to] = dep[r] + ;
fa[e[i].to] = r;
dfs(e[i].to);
if (siz[e[i].to] > siz[son[r]])
son[r] = e[i].to;
siz[r] += siz[e[i].to];
}
} void build(int r,int f)
{
pos[r] = tot++;
top[r] = f;
if (son[r] > )
build(son[r],top[r]);
for (int i = head[r]; i > ; i = e[i].next)
{
if (fa[r] != e[i].to && son[r] != e[i].to)
build(e[i].to,e[i].to);
}
} void update(int l,int r,int o,int x,int v)
{
if (l == r)
{
seg_tree[o] = v;
return;
}
int mid = (l + r) >> ;
if (x <= mid)
update(l,mid,o<<,x,v);
if (x > mid)
update(mid+,r,o<<|,x,v);
seg_tree[o] = max(seg_tree[o<<],seg_tree[o<<|]);
} int query(int l,int r,int o,int ua,int ub)
{
if (ua <= l && ub >= r)
return seg_tree[o];
int mid = (l + r) >> ;
int t1,t2;
t1 = t2 = ;
if (ua <= mid)
t1 = query(l,mid,o<<,ua,ub);
if (ub > mid)
t2 = query(mid+,r,o<<|,ua,ub);
return max(t1,t2);
} int get_max(int ua,int ub)
{
int f1 = top[ua];
int f2 = top[ub];
int tmp = ;
while (f1 != f2)
{
if (dep[f1] < dep[f2])
swap(f1,f2),swap(ua,ub);
tmp = max(tmp,query(,tot,,pos[f1],pos[ua]));
ua = fa[f1],f1 = top[ua];
}
if (ua == ub)
return tmp;
if (dep[ua] > dep[ub])
swap(ua,ub);
tmp = max(tmp,query(,tot,,pos[son[ua]],pos[ub]));
return tmp;
} int d[maxn][];
void init()
{
int n;
scanf ("%d",&n);
memset(dep,,sizeof(dep));
memset(son,,sizeof(son));
memset(head,,sizeof(head));
memset(fa,,sizeof(fa));
memset(top,,sizeof(top));
int root = (n+)>>;
fa[root] = dep[root] =;
tot = edge = ;
int a,b,c;
for (int i = ; i < n; i++)
{
scanf ("%d%d%d",&a,&b,&c);
add(a,b),add(b,a);
d[i][] = a,d[i][] = b,d[i][] = c;
}
dfs(root);
build(root,root);
tot--;
for (int i = ; i < n; i++)
{
if (dep[d[i][]] < dep[d[i][]])
swap(d[i][],d[i][]);
update(,tot,,pos[d[i][]],d[i][]);
} }
int main(void)
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif // ONLINE_JUDGE
int t;
scanf ("%d",&t);
while (t--)
{
init();
char op[];
while (scanf ("%s",op),op[] != 'D')
{
int x,y;
scanf ("%d%d",&x,&y);
if (op[] == 'C')
update(,tot,,pos[d[x][]],y);
if (op[] == 'Q')
printf("%d\n",get_max(x,y));
}
}
return ;
}

SPOJ375.QTREE树链剖分的更多相关文章

  1. QTREE 树链剖分---模板 spoj QTREE

    <树链剖分及其应用> 一文讲得非常清楚,我一早上就把他学会了并且A了这题的入门题. spoj QTREE 题目: 给出一棵树,有两种操作: 1.修改一条边的边权. 2.询问节点a到b的最大 ...

  2. SPOJ QTREE 树链剖分

    树链剖分的第一题,易懂,注意这里是边. #include<queue> #include<stack> #include<cmath> #include<cs ...

  3. Spoj Query on a tree SPOJ - QTREE(树链剖分+线段树)

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...

  4. 【学术篇】SPOJ QTREE 树链剖分

    发现链剖这东西好久不写想一遍写对是有难度的.. 果然是熟能生巧吧.. WC的dalao们都回来了 然后就用WC的毒瘤题荼毒了我们一波, 本来想打个T1 44分暴力 然后好像是特判写挂了还是怎么的就只能 ...

  5. Cogs 1672. [SPOJ375 QTREE]难存的情缘 LCT,树链剖分,填坑计划

    题目:http://cojs.tk/cogs/problem/problem.php?pid=1672 1672. [SPOJ375 QTREE]难存的情缘 ★★★☆   输入文件:qtree.in  ...

  6. [SPOJ375]QTREE - Query on a tree【树链剖分】

    题目描述 给你一棵树,两种操作. 修改边权,查找边权的最大值. 分析 我们都知道,树链剖分能够维护点权. 而且每一条边只有一个,且唯一对应一个儿子节点,那么就把信息放到这个儿子节点上. 注意,lca的 ...

  7. spoj QTREE - Query on a tree(树链剖分+线段树单点更新,区间查询)

    传送门:Problem QTREE https://www.cnblogs.com/violet-acmer/p/9711441.html 题解: 树链剖分的模板题,看代码比看文字解析理解来的快~~~ ...

  8. 树链剖分边权模板spoj375

    树链剖分是树分解成多条链来解决树上两点之间的路径上的问题 如何求出树链:第一次dfs求出树上每个结点的大小和深度和最大的儿子,第二次dfs就能将最大的儿子串起来并hash(映射)到线段树上(或者其他数 ...

  9. SPOJ QTREE Query on a tree 树链剖分+线段树

    题目链接:http://www.spoj.com/problems/QTREE/en/ QTREE - Query on a tree #tree You are given a tree (an a ...

随机推荐

  1. SOFTWARE_INTRODUCE_01

    &amp;amp;amp;amp;lt;br data-mce-bogus="1"&amp;amp;amp;amp;gt;&amp;amp;amp;amp; ...

  2. node.js + express(ejs) + mongodb(mongoose) 增删改实例

    MongoDB 安装步骤总结: 1.解压目录到d盘 mongodb 2.安装目录的下新建文件mongo.config文件 ##store data here dbpath=D:\mongodb\dat ...

  3. c++大作业--学籍管理系统--

    1.题目描写叙述 学籍管理系统: 依据信息管理系统的业务流程.要求以及所要实现的目标,完毕下面功能: (1)建立学生档案的管理和维护.实现计算机自己主动化管理体制. (2)建立学生成绩管理机制,在计算 ...

  4. 模拟jquery封装选择器

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  5. Python购物车的实现课程

    需求: 1.用户输入工资收入 2.打印商品列表 3.用户选择商品,不断的加入购物车 4.检测用户余额,直接捐款,不足提示余额不足 5.允许主动退出,退出时,打印已购商品列表 重点方法: 打印列表下标的 ...

  6. OD: Shellcode / Exploit & DLL Trampolining

    看到第五章了. 标题中 Dll Tramplining(跳板)名字是从如下地址找到的,写的很好: http://en.wikipedia.org/wiki/Buffer_overflow#The_ju ...

  7. javascript 实现jsonp

    jsonp原理其实也简单,虽然ajax不能跨域,但是通过src这个属性我们可以实现跨域,其实和我们引入第三方jquery调用它的方法一样的. html: <!DOCTYPE html> & ...

  8. oracle数据库实验讲义-读书笔记(一)

    1.激活锁定的用户alter user scott account unlock identified by tiger;2.使用内含脚本建立scott用户@%oracle_home%\rdbms\a ...

  9. 22 java常用方法

    /** * 通过正则获取该目录下满足条件的所有目录 * @param luceneFilePathRegular 正则目录,如/user/solrindex/正则表达式 * @return 满足正则表 ...

  10. phpcms v9升级后台无法上传缩略图的原因分析

    phpcms V9 是目前国内使用人数最多的一款开源免费的CMS系统,正是由于他的免费性,开源性,以及其自身的功能性比较强大,所以倍受许多站长朋友们的亲来,以及许多的公司的喜欢.phpcms也为了完善 ...