POJ 1330 Nearest Common Ancestors LCA题解
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 19728 | Accepted: 10460 |
Description
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor
of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node
x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common
ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.
For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest
common ancestor of y and z is y.
Write a program that finds the nearest common ancestor of two distinct nodes in a tree.
Input
N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers
whose nearest common ancestor is to be computed.
Output
Sample Input
2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5
Sample Output
4
3
Source
本题是一个多叉树,然后求两点的近期公共单亲节点。
就是典型的LCA问题。这是一个非常多解法的,并且被研究的非常透彻的问题。
原始的解法:从根节点往下搜索,若果搜索到两个节点分别在一个节点的两边。那么这个点就是近期公共单亲节点了。
Trajan离线算法:首次找到两个节点的时候,假设记录了他们的最低单亲节点,那么答案就是这个最低的单亲节点了。
问题是怎样有效记录这个最低单亲节点,并有效依据遍历的情况更新,这就是利用Union Find(并查集)记录已经找到的节点,并及时更新最新訪问的节点的当前最低单亲节点。
就是并查集的灵活运用啦,假设学会了并查集那么学这个算法是不难的了。
2015-1-24 update:
以下括号的分析好像有点问题:
(以下是简单思路差点儿相同是暴力法的解法,只是事实上相对本题来说就是一次查询,故此这个也是不错的方法,并且平均时间效率只是O(lgn),应该是非常快的了。
只是有思想和这个差点儿相同的。可是更加省内存的方法,就是从须要查找的节点往单亲节点查找,那么速度是一样的,只是省内存,由于仅仅须要记录一个父母节点就能够了。并且程序会简洁点。)
这种方法的基本思想是:
如果要查找u,v的LCA,
递归深度遍历整棵树,这个时候有三种情况:
1. 假设没哟找到u或者v当中一个节点。那么就返回0;
2 假设找到了u或v的当中一个节点。那么就返回找到的节点
3 假设找到u且找到v两个节点。那么就返回其父母节点。而这个父母节点正好是LCA,为什么呢?由于这个是逐层递归上去的算法,仅仅有在u和v的分叉节点能找到两个非零返回值,其它情况都仅仅能找到一个或者0个非零返回值。巧妙地利用了递归的特点。把LCA作为了终于的返回值。
由于最坏情况须要递归整棵树。故此这个算法的时间效率事实上是O(n),n为整棵树的节点数。
故此本算法尽管AC了,可是事实上时间效率还是蛮低的。
之前分析说是O(lgn)是不正确的。不好意思。假设误导了某些读者,那么表示抱歉。
还好以下算法是没错的。
本算法对递归的理解还是要求挺高的,对于刚開始学习的人还是有点难度。
int const MAX_N = 10001; struct Node
{
bool notRoot;
vector<int> children;
}; Node Tree[MAX_N];
int N; int find(int r, int lNode, int rNode)
{
if (!r) return 0;
if (r == lNode) return r;
if (r == rNode) return r; vector<int> found;
for (int i = 0; i < (int)Tree[r].children.size(); i++)
{
found.push_back(find(Tree[r].children[i], lNode, rNode));
}
int u = 0, v = 0;
for (int i = 0; i < (int)found.size(); i++)
{
if (found[i] != 0)
{
if (u) v = found[i];
else u = found[i];
}
}
if (v) return r;
return u;
} void solve()
{
scanf("%d", &N);
memset(Tree, 0, sizeof(Tree)); int u, v;
for (int i = 1; i < N; i++)
{
scanf("%d %d", &u, &v);
Tree[u].children.push_back(v);
Tree[v].notRoot = 1;
}
int root = 0;
for (int i = 1; i <= N; i++)
{
if (!Tree[i].notRoot)
{
root = i;
break;
}
} scanf("%d %d", &u, &v);
int r = find(root, u, v);
printf("%d\n", r);//if (lin && rin) 必定是存在点。故此无需推断
} int main()
{
int T;
scanf("%d", &T);
while (T--)
{
solve();
}
return 0;
}
以下是Tarjan离线算法,效率应该和上面是一样的。多次查询的时候就能提高效率。只是实际执行比上面快。
#include <stdio.h>
#include <string.h>
#include <vector>
using std::vector;
int const MAX_N = 10001; struct Node
{
bool notRoot;
bool vis;
vector<int> children;
}; Node Tree[MAX_N];
int N;
int u, v;
int parent[MAX_N]; inline int find(int x)
{
if (!parent[x]) return x;
return parent[x] = find(parent[x]);
} inline void unionTwo(int p, int x)
{
p = find(p);
x = find(x);
if (p == x) return ;
parent[x] = p;
} bool LCATarjan(int root)
{
Tree[root].vis = true;
if (root == u && Tree[v].vis == true)
{
printf("%d\n", find(v));
return true;
}
if (root == v && Tree[u].vis == true)
{
printf("%d\n", find(u));
return true;
}
for (int i = 0; i < (int)Tree[root].children.size(); i++)
{
if (LCATarjan(Tree[root].children[i])) return true;
unionTwo(root, Tree[root].children[i]);
}
return false;
} void solve()
{
scanf("%d", &N);
memset(Tree, 0, sizeof(Tree));
memset(parent, 0, sizeof(parent)); for (int i = 1; i < N; i++)
{
scanf("%d %d", &u, &v);
Tree[u].children.push_back(v);
Tree[v].notRoot = 1;
}
int root = 0;
for (int i = 1; i <= N; i++)
{
if (!Tree[i].notRoot)
{
root = i;
break;
}
}
scanf("%d %d", &u, &v);
LCATarjan(root);
} int main()
{
int T;
scanf("%d", &T);
while (T--)
{
solve();
}
return 0;
}
POJ 1330 Nearest Common Ancestors LCA题解的更多相关文章
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- poj 1330 Nearest Common Ancestors lca 在线rmq
Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...
- poj 1330 Nearest Common Ancestors LCA
题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...
- POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)
/* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...
- POJ 1330 Nearest Common Ancestors(LCA模板)
给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ 1330 Nearest Common Ancestors(lca)
POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
随机推荐
- js 时间戳转换成时间格式,可自定义格式
由于 c# 通过ajax获取的时间 传到前台 格式为:/Date(1354116249000)/ 所以需要转换一下,想要什么格式 更改 format() 里的 返回语句 就可以了 formatDate ...
- ExtJs005继承
Ext.onReady(function () { //extend 继承 Ext.define('Person', { config: { name: 'aaa' }, //给当前定义的类加一个构造 ...
- 怎样用Excel自动排成绩
经常需要做表格,排成绩名次总是笨笨的一个一个填,费时又费力,终于找到了解决的办法%>_<%(不要嘲笑我了(✿◡‿◡)),原来就是一个名叫RANK的函数,还在苦逼地自己输的小伙伴们,快来看吧 ...
- 常用类库之.NET中的字符串
字符串的特性 .不可变性 由于字符串是不可变的的,每次修改字符串,都是创建了一个单独字符串副本(拷贝了一个字符串副本).之所以发生改变只是因为指向了一块新的地址. .字符串池(只针对字符串常量) 当一 ...
- js正则语法
整数或者小数:^[0-9]+\.{0,1}[0-9]{0,2}$只能输入数字:"^[0-9]*$".只能输入n位的数字:"^\d{n}$".只能输入至少n位的数 ...
- javascript 原型 和 原型链
最近几天,好些新同事来问原型,原型链啥的.本身作为菜鸟的我好像也没有好好整理过这个,这里写写自己的理解. 原型 大家都知道,JavaScript 不包含传统的类继承模型,而是使用 prototype ...
- 一个最简的 USB Audio 示例
经过了两三个月的痛苦,USB 协议栈的 Audio Device Class 框架已具雏形了,用了两三天时间,使用这个框架实战了一个基于新唐 M0 的最简单的 USB Audio 程序,可以作为 US ...
- [置顶] LED办公楼宇照明节能方案及城市夜景照明节能方案
LED照明办公楼宇节能方案 .通用标准灯头,可直接替换现有卤素灯.白炽灯.荧光灯.
- C++模板:ST算法
//初始化 void init_rmq(int n){ for(int i=0;i<n;i++)d[i][0]=a[i]; for(int j=1;(1<<j)<=n;j++) ...
- Convert Sorted List to Binary Search Tree ------C++ 递归创建平衡二叉查找树
有序链表 0->1->2->3->4->5 转换为一个二叉排序树.我们在此创建一个平衡二叉排序树 1.先找链表到中间的节点 2.中间节点的val创建一个新的树节点Tree ...