Java多线程系列--“JUC锁”06之 Condition条件
概要
前面对JUC包中的锁的原理进行了介绍,本章会JUC中对与锁经常配合使用的Condition进行介绍,内容包括:
Condition介绍
Condition函数列表
Condition示例
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3496716.html
Condition介绍
Condition的作用是对锁进行更精确的控制。Condition中的await()方法相当于Object的wait()方法,Condition中的signal()方法相当于Object的notify()方法,Condition中的signalAll()相当于Object的notifyAll()方法。不同的是,Object中的wait(),notify(),notifyAll()方法是和"同步锁"(synchronized关键字)捆绑使用的;而Condition是需要与"互斥锁"/"共享锁"捆绑使用的。
Condition函数列表
// 造成当前线程在接到信号或被中断之前一直处于等待状态。
void await()
// 造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。
boolean await(long time, TimeUnit unit)
// 造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。
long awaitNanos(long nanosTimeout)
// 造成当前线程在接到信号之前一直处于等待状态。
void awaitUninterruptibly()
// 造成当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态。
boolean awaitUntil(Date deadline)
// 唤醒一个等待线程。
void signal()
// 唤醒所有等待线程。
void signalAll()
Condition示例
示例1是通过Object的wait(), notify()来演示线程的休眠/唤醒功能。
示例2是通过Condition的await(), signal()来演示线程的休眠/唤醒功能。
示例3是通过Condition的高级功能。
示例1
public class WaitTest1 { public static void main(String[] args) { ThreadA ta = new ThreadA("ta"); synchronized(ta) { // 通过synchronized(ta)获取“对象ta的同步锁”
try {
System.out.println(Thread.currentThread().getName()+" start ta");
ta.start(); System.out.println(Thread.currentThread().getName()+" block");
ta.wait(); // 等待 System.out.println(Thread.currentThread().getName()+" continue");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} static class ThreadA extends Thread{ public ThreadA(String name) {
super(name);
} public void run() {
synchronized (this) { // 通过synchronized(this)获取“当前对象的同步锁”
System.out.println(Thread.currentThread().getName()+" wakup others");
notify(); // 唤醒“当前对象上的等待线程”
}
}
}
}
示例2
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock; public class ConditionTest1 { private static Lock lock = new ReentrantLock();
private static Condition condition = lock.newCondition(); public static void main(String[] args) { ThreadA ta = new ThreadA("ta"); lock.lock(); // 获取锁
try {
System.out.println(Thread.currentThread().getName()+" start ta");
ta.start(); System.out.println(Thread.currentThread().getName()+" block");
condition.await(); // 等待 System.out.println(Thread.currentThread().getName()+" continue");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock(); // 释放锁
}
} static class ThreadA extends Thread{ public ThreadA(String name) {
super(name);
} public void run() {
lock.lock(); // 获取锁
try {
System.out.println(Thread.currentThread().getName()+" wakup others");
condition.signal(); // 唤醒“condition所在锁上的其它线程”
} finally {
lock.unlock(); // 释放锁
}
}
}
}
运行结果:
main start ta
main block
ta wakup others
main continue
通过“示例1”和“示例2”,我们知道Condition和Object的方法有一下对应关系:
Object Condition
休眠 wait await
唤醒个线程 notify signal
唤醒所有线程 notifyAll signalAll
Condition除了支持上面的功能之外,它更强大的地方在于:能够更加精细的控制多线程的休眠与唤醒。对于同一个锁,我们可以创建多个Condition,在不同的情况下使用不同的Condition。
例如,假如多线程读/写同一个缓冲区:当向缓冲区中写入数据之后,唤醒"读线程";当从缓冲区读出数据之后,唤醒"写线程";并且当缓冲区满的时候,"写线程"需要等待;当缓冲区为空时,"读线程"需要等待。 如果采用Object类中的wait(), notify(), notifyAll()实现该缓冲区,当向缓冲区写入数据之后需要唤醒"读线程"时,不可能通过notify()或notifyAll()明确的指定唤醒"读线程",而只能通过notifyAll唤醒所有线程(但是notifyAll无法区分唤醒的线程是读线程,还是写线程)。 但是,通过Condition,就能明确的指定唤醒读线程。
看看下面的示例3,可能对这个概念有更深刻的理解。
示例3
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock; class BoundedBuffer {
final Lock lock = new ReentrantLock();
final Condition notFull = lock.newCondition();
final Condition notEmpty = lock.newCondition(); final Object[] items = new Object[5];
int putptr, takeptr, count; public void put(Object x) throws InterruptedException {
lock.lock(); //获取锁
try {
// 如果“缓冲已满”,则等待;直到“缓冲”不是满的,才将x添加到缓冲中。
while (count == items.length)
notFull.await();
// 将x添加到缓冲中
items[putptr] = x;
// 将“put统计数putptr+1”;如果“缓冲已满”,则设putptr为0。
if (++putptr == items.length) putptr = 0;
// 将“缓冲”数量+1
++count;
// 唤醒take线程,因为take线程通过notEmpty.await()等待
notEmpty.signal(); // 打印写入的数据
System.out.println(Thread.currentThread().getName() + " put "+ (Integer)x);
} finally {
lock.unlock(); // 释放锁
}
} public Object take() throws InterruptedException {
lock.lock(); //获取锁
try {
// 如果“缓冲为空”,则等待;直到“缓冲”不为空,才将x从缓冲中取出。
while (count == 0)
notEmpty.await();
// 将x从缓冲中取出
Object x = items[takeptr];
// 将“take统计数takeptr+1”;如果“缓冲为空”,则设takeptr为0。
if (++takeptr == items.length) takeptr = 0;
// 将“缓冲”数量-1
--count;
// 唤醒put线程,因为put线程通过notFull.await()等待
notFull.signal(); // 打印取出的数据
System.out.println(Thread.currentThread().getName() + " take "+ (Integer)x);
return x;
} finally {
lock.unlock(); // 释放锁
}
}
} public class ConditionTest2 {
private static BoundedBuffer bb = new BoundedBuffer(); public static void main(String[] args) {
// 启动10个“写线程”,向BoundedBuffer中不断的写数据(写入0-9);
// 启动10个“读线程”,从BoundedBuffer中不断的读数据。
for (int i=0; i<10; i++) {
new PutThread("p"+i, i).start();
new TakeThread("t"+i).start();
}
} static class PutThread extends Thread {
private int num;
public PutThread(String name, int num) {
super(name);
this.num = num;
}
public void run() {
try {
Thread.sleep(1); // 线程休眠1ms
bb.put(num); // 向BoundedBuffer中写入数据
} catch (InterruptedException e) {
}
}
} static class TakeThread extends Thread {
public TakeThread(String name) {
super(name);
}
public void run() {
try {
Thread.sleep(10); // 线程休眠1ms
Integer num = (Integer)bb.take(); // 从BoundedBuffer中取出数据
} catch (InterruptedException e) {
}
}
}
}
(某一次)运行结果:
p1 put 1
p4 put 4
p5 put 5
p0 put 0
p2 put 2
t0 take 1
p3 put 3
t1 take 4
p6 put 6
t2 take 5
p7 put 7
t3 take 0
p8 put 8
t4 take 2
p9 put 9
t5 take 3
t6 take 6
t7 take 7
t8 take 8
t9 take 9
结果说明:
(01) BoundedBuffer 是容量为5的缓冲,缓冲中存储的是Object对象,支持多线程的读/写缓冲。多个线程操作“一个BoundedBuffer对象”时,它们通过互斥锁lock对缓冲区items进行互斥访问;而且同一个BoundedBuffer对象下的全部线程共用“notFull”和“notEmpty”这两个Condition。
notFull用于控制写缓冲,notEmpty用于控制读缓冲。当缓冲已满的时候,调用put的线程会执行notFull.await()进行等待;当缓冲区不是满的状态时,就将对象添加到缓冲区并将缓冲区的容量count+1,最后,调用notEmpty.signal()缓冲notEmpty上的等待线程(调用notEmpty.await的线程)。 简言之,notFull控制“缓冲区的写入”,当往缓冲区写入数据之后会唤醒notEmpty上的等待线程。
同理,notEmpty控制“缓冲区的读取”,当读取了缓冲区数据之后会唤醒notFull上的等待线程。
(02) 在ConditionTest2的main函数中,启动10个“写线程”,向BoundedBuffer中不断的写数据(写入0-9);同时,也启动10个“读线程”,从BoundedBuffer中不断的读数据。
(03) 简单分析一下运行结果。
1, p1线程向缓冲中写入1。 此时,缓冲区数据: | 1 | | | | |
2, p4线程向缓冲中写入4。 此时,缓冲区数据: | 1 | 4 | | | |
3, p5线程向缓冲中写入5。 此时,缓冲区数据: | 1 | 4 | 5 | | |
4, p0线程向缓冲中写入0。 此时,缓冲区数据: | 1 | 4 | 5 | 0 | |
5, p2线程向缓冲中写入2。 此时,缓冲区数据: | 1 | 4 | 5 | 0 | 2 |
此时,缓冲区容量为5;缓冲区已满!如果此时,还有“写线程”想往缓冲中写入数据,会调用put中的notFull.await()等待,直接缓冲区非满状态,才能继续运行。
6, t0线程从缓冲中取出数据1。此时,缓冲区数据: | | 4 | 5 | 0 | 2 |
7, p3线程向缓冲中写入3。 此时,缓冲区数据: | 3 | 4 | 5 | 0 | 2 |
8, t1线程从缓冲中取出数据4。此时,缓冲区数据: | 3 | | 5 | 0 | 2 |
9, p6线程向缓冲中写入6。 此时,缓冲区数据: | 3 | 6 | 5 | 0 | 2 |
...
更多内容
1. Java多线程系列--“基础篇”04之 synchronized关键字
2. Java多线程系列--“基础篇”05之 线程等待与唤醒
4. Java多线程系列--“JUC锁”02之 互斥锁ReentrantLock
5. Java多线程系列--“JUC锁”03之 公平锁(一)
6. Java多线程系列--“JUC锁”04之 公平锁(二)
Java多线程系列--“JUC锁”06之 Condition条件的更多相关文章
- Java多线程系列 JUC锁06 Condition条件
Condition介绍 Condition中提供了一组类似于Object中的监视器方法.与Lock配合可以完成等待通知模式. Lock lock = new ReentrantLock(); Cond ...
- Java多线程系列--“JUC锁”10之 CyclicBarrier原理和示例
概要 本章介绍JUC包中的CyclicBarrier锁.内容包括:CyclicBarrier简介CyclicBarrier数据结构CyclicBarrier源码分析(基于JDK1.7.0_40)Cyc ...
- Java多线程系列--“JUC锁”01之 框架
本章,我们介绍锁的架构:后面的章节将会对它们逐个进行分析介绍.目录如下:01. Java多线程系列--“JUC锁”01之 框架02. Java多线程系列--“JUC锁”02之 互斥锁Reentrant ...
- Java多线程系列--“JUC锁”09之 CountDownLatch原理和示例
概要 前面对"独占锁"和"共享锁"有了个大致的了解:本章,我们对CountDownLatch进行学习.和ReadWriteLock.ReadLock一样,Cou ...
- Java多线程系列--“JUC锁”07之 LockSupport
概述 本章介绍JUC(java.util.concurrent)包中的LockSupport.内容包括:LockSupport介绍LockSupport函数列表LockSupport参考代码(基于JD ...
- Java多线程系列--“JUC锁”08之 共享锁和ReentrantReadWriteLock
概要 Java的JUC(java.util.concurrent)包中的锁包括"独占锁"和"共享锁".在“Java多线程系列--“JUC锁”02之 互斥锁Ree ...
- Java多线程系列--“JUC锁”11之 Semaphore信号量的原理和示例
概要 本章,我们对JUC包中的信号量Semaphore进行学习.内容包括:Semaphore简介Semaphore数据结构Semaphore源码分析(基于JDK1.7.0_40)Semaphore示例 ...
- Java多线程系列--“JUC锁”03之 公平锁(一)
概要 本章对“公平锁”的获取锁机制进行介绍(本文的公平锁指的是互斥锁的公平锁),内容包括:基本概念ReentrantLock数据结构参考代码获取公平锁(基于JDK1.7.0_40)一. tryAcqu ...
- Java多线程系列--“JUC锁”04之 公平锁(二)
概要 前面一章,我们学习了“公平锁”获取锁的详细流程:这里,我们再来看看“公平锁”释放锁的过程.内容包括:参考代码释放公平锁(基于JDK1.7.0_40) “公平锁”的获取过程请参考“Java多线程系 ...
随机推荐
- 什么是publickeytoken及publickeytoken的作用
什么是publickeytoken及publickeytoken的作用 dll的publickeytoken的作用.
- Codeforces Round #200 (Div. 1) D. Water Tree(dfs序加线段树)
思路: dfs序其实是很水的东西. 和树链剖分一样, 都是对树链的hash. 该题做法是:每次对子树全部赋值为1,对一个点赋值为0,查询子树最小值. 该题需要注意的是:当我们对一棵子树全都赋值为1的 ...
- Windows 下 ffmpeg 转 mp4
最近在研究所有视频格式转 mp4 因为html5 只支持mov MP4 等格式..查阅了 很多资料发现 转成flv 很简单.. 可是要转 mp4 就难了... 经过我不屑的努力..终于转换成功了 ...
- javacript实现不被浏览器拦截打开新窗口
情景: 1.用户发送数据到服务器 2.服务器根据用户的数据生成文档 3.服务器把所生成的文档的下载地址提供给用户 4.用户使用的浏览器自动根据下载地址下载文件 实现: 网上搜索查找了下实现方式,就我查 ...
- java线程池初步理解
多线程基础准备 进程:程序的执行过程,持有资源和线程 线程:是系统中最小的执行单元,同一个进程可以有多个线程,线程共享进程资源 线程交互(同步synchronized):包括互斥和协作,互斥通过对象锁 ...
- nexus2.1.2的配置
最近在学习maven,逐渐接触到私服的搭建,也就着手学习使用nexus了,在http://www.sonatype.org/nexus/go网站上nexus最新版本的是,不过版本要同jvm的版本匹对, ...
- mysql注入读写文件
mysql <5.0 读文件:load_file() sql-shell select load_file(''); d:/www/xx/index.php /home/webroot/.... ...
- PHP限制提现时间-----周一至周五 9点到17点
$time = time(); $err_msg = '请在周一至周五 9:00-17:00 提交申请!'; $week = date('w', $time); $hour = date('H', $ ...
- Nginx开启Gzip压缩
.Vim打开Nginx配置文件 vim /usr/local/nginx/conf/nginx.conf .找到如下一段,进行修改 gzip on; gzip_min_length 1k; gzip_ ...
- !important
当你需要确保某元素具有指定的 CSS 时,你可以使用!important. 举例如下: color: pink !important;