Atitti 文本分类 以及 垃圾邮件 判断原理 以及贝叶斯算法的应用解决方案
Atitti 文本分类 以及 垃圾邮件 判断原理 以及贝叶斯算法的应用解决方案
1.5. 。这时我们还需要一个用于比较的门槛值。Paul Graham的门槛值是0.9,概率大于0.9,4
1.1. 七、什么是贝叶斯过滤器?
垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户。
正确识别垃圾邮件的技术难度非常大。传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等。前者的过滤依据是特定的词语;后者则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比。它们的识别效果都不理想,而且很容易规避。
2002年,Paul Graham提出使用"贝叶斯推断"过滤垃圾邮件。他说,这样做的效果,好得不可思议。1000封垃圾邮件可以过滤掉995封,且没有一个误判。
另外,这种过滤器还具有自我学习的功能,会根据新收到的邮件,不断调整。收到的垃圾邮件越多,它的准确率就越高。
1.2. 八、建立历史资料库
贝叶斯过滤器是一种统计学过滤器,建立在已有的统计结果之上。所以,我们必须预先提供两组已经识别好的邮件,一组是正常邮件,另一组是垃圾邮件。
我们用这两组邮件,对过滤器进行"训练"。这两组邮件的规模越大,训练效果就越好。Paul Graham使用的邮件规模,是正常邮件和垃圾邮件各4000封。
"训练"过程很简单。首先,解析所有邮件,提取每一个词。然后,计算每个词语在正常邮件和垃圾邮件中的出现频率。比如,我们假定"sex"这个词,在4000封垃圾邮件中,有200封包含这个词,那么它的出现频率就是5%;而在4000封正常邮件中,只有2封包含这个词,那么出现频率就是0.05%。(【注释】如果某个词只出现在垃圾邮件中,Paul Graham就假定,它在正常邮件的出现频率是1%,反之亦然。这样做是为了避免概率为0。随着邮件数量的增加,计算结果会自动调整。)
有了这个初步的统计结果,过滤器就可以投入使用了。
1.3. 十、联合概率的计算
做完上面一步,请问我们能否得出结论,这封新邮件就是垃圾邮件?
回答是不能。因为一封邮件包含很多词语,一些词语(比如sex)说这是垃圾邮件,另一些说这不是。你怎么知道以哪个词为准?
Paul Graham的做法是,选出这封信中P(S|W)最高的15个词,计算它们的联合概率
所谓联合概率,就是指在多个事件发生的情况下,另一个事件发生概率有多大。比如,已知W1和W2是两个不同的词语,它们都出现在某封电子邮件之中,那么这封邮件是垃圾邮件的概率,就是联合概率。
1.4. 十一、最终的计算公式
将上面的公式扩展到15个词的情况,就得到了最终的概率计算公式:
P=1-(1-p1)*(1-p2)*(1-p3);
一封邮件是不是垃圾邮件,就用这个式子进行计算
1.5. 。这时我们还需要一个用于比较的门槛值。Paul Graham的门槛值是0.9,概率大于0.9,
表示15个词联合认定,这封邮件有90%以上的可能属于垃圾邮件;概率小于0.9,就表示是正常邮件。
有了这个公式以后,一封正常的信件即使出现sex这个词,也不会被认定为垃圾邮件了。
参考资料
贝叶斯推断及其互联网应用(二):过滤垃圾邮件 - 阮一峰的网络日志.html
Atitit 贝叶斯算法的原理以及垃圾邮件分类的原理
作者:: 绰号:老哇的爪子 ( 全名::Attilax Akbar Al Rapanui 阿提拉克斯 阿克巴 阿尔 拉帕努伊 )
汉字名:艾提拉(艾龙), EMAIL:1466519819@qq.com
转载请注明来源: http://www.cnblogs.com/attilax/
Atiend
Atitti 文本分类 以及 垃圾邮件 判断原理 以及贝叶斯算法的应用解决方案的更多相关文章
- Atitit 贝叶斯算法的原理以及垃圾邮件分类的原理
Atitit 贝叶斯算法的原理以及垃圾邮件分类的原理 1.1. 最开始的垃圾邮件判断方法,使用contain包含判断,只能一个关键词,而且100%概率判断1 1.2. 元件部件串联定律1 1.3. 垃 ...
- 【十大算法实现之naive bayes】朴素贝叶斯算法之文本分类算法的理解与实现
关于bayes的基础知识,请参考: 基于朴素贝叶斯分类器的文本聚类算法 (上) http://www.cnblogs.com/phinecos/archive/2008/10/21/1315948.h ...
- 什么是机器学习的分类算法?【K-近邻算法(KNN)、交叉验证、朴素贝叶斯算法、决策树、随机森林】
1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类 ...
- Naive Bayes(朴素贝叶斯算法)[分类算法]
Naïve Bayes(朴素贝叶斯)分类算法的实现 (1) 简介: (2) 算法描述: (3) <?php /* *Naive Bayes朴素贝叶斯算法(分类算法的实现) */ /* *把. ...
- 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)
朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...
- Machine Learning for hackers读书笔记(三)分类:垃圾邮件过滤
#定义函数,打开每一个文件,找到空行,将空行后的文本返回为一个字符串向量,该向量只有一个元素,就是空行之后的所有文本拼接之后的字符串 #很多邮件都包含了非ASCII字符,因此设为latin1就可以读取 ...
- 朴素贝叶斯算法——实现新闻分类(Sklearn实现)
1.朴素贝叶斯实现新闻分类的步骤 (1)提供文本文件,即数据集下载 (2)准备数据 将数据集划分为训练集和测试集:使用jieba模块进行分词,词频统计,停用词过滤,文本特征提取,将文本数据向量化 停用 ...
- 基于贝叶斯算法实现简单的分类(java)
参考文章:https://blog.csdn.net/qq_32690999/article/details/78737393 项目代码目录结构 模拟训练的数据集 核心代码 Bayes.java pa ...
- 基于Naive Bayes算法的文本分类
理论 什么是朴素贝叶斯算法? 朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关.举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果 ...
随机推荐
- <<UML大战需求分析>>阅读笔记(2)
<<UML大战需求分析>>阅读笔记(2)> 此次读了uml大战需求分析的第三四章,我发现这本书讲的特别的好,由于这学期正在学习设计模式这本书,这本书就讲究对uml图的利用 ...
- [fortify] preg_replace命令注入
慎用preg_replace危险的/e修饰符(一句话后门常用) 作者: 字体:[增加 减小] 类型:转载 时间:2013-06-19我要评论 要确保 replacement 构成一个合法的 PHP 代 ...
- bash: warning: setlocale: LC_ALL: cannot change locale (en_US.UTF-8)
bash: warning: setlocale: LC_ALL: cannot change locale (en_US.UTF-8) Q: hubery@roaster:~$ locale loc ...
- VS2013正确设置DLL环境变量目录的方法
VS有个比较迷惑人的选项,就是在工程>>属性中有个Executable Directories设置项, 几乎所有地球人都认为这个选项是设置exe可执行文件依赖的DLL目录用的,这无疑会方便 ...
- Android上dip、dp、px、sp等单位说明(转)
dip device independent pixels(设备独立像素). 不同设备不同的显示效果,这个和设备硬件有关,一般我们为了支持WVGA.HVGA和QVGA 推荐使用这个,不依赖像素. 在 ...
- Python 5 —— OOP
OOP class MyClass: y = None def __init__(self,x,y): self.__x = x self.y = y def getx(self): return s ...
- [LeetCode] 435 Non-overlapping Intervals
Given a collection of intervals, find the minimum number of intervals you need to remove to make the ...
- [UCSD白板题] Pairwise Distinct Summands
Problem Introduction This is an example of a problem where a subproblem of the corresponding greedy ...
- strncpy和memcpy的区别
今天不小心在该用memcpy的时候,用了strncpy使自己吃了亏,所以写出这个博文. memcpy就是纯字节拷贝,而strncpy就不同了,字符串是以'\0'结尾的.如果一个字符buffer长度为6 ...
- bower 问题
没法写成bower install jquery bootstrap:只能是bower install jquery; bower install bootstrap