Atitti 文本分类  以及 垃圾邮件 判断原理 以及贝叶斯算法的应用解决方案

1.1. 七、什么是贝叶斯过滤器?1

1.2. 八、建立历史资料库2

1.3. 十、联合概率的计算3

1.4. 十一、最终的计算公式3

1.5. 。这时我们还需要一个用于比较的门槛值。Paul Graham的门槛值是0.9,概率大于0.9,4

1.1. 七、什么是贝叶斯过滤器?

垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户。

正确识别垃圾邮件的技术难度非常大。传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等。前者的过滤依据是特定的词语;后者则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比。它们的识别效果都不理想,而且很容易规避。

2002年,Paul Graham提出使用"贝叶斯推断"过滤垃圾邮件。他说,这样做的效果,好得不可思议。1000封垃圾邮件可以过滤掉995封,且没有一个误判。

另外,这种过滤器还具有自我学习的功能,会根据新收到的邮件,不断调整。收到的垃圾邮件越多,它的准确率就越高。

1.2. 八、建立历史资料库

贝叶斯过滤器是一种统计学过滤器,建立在已有的统计结果之上。所以,我们必须预先提供两组已经识别好的邮件,一组是正常邮件,另一组是垃圾邮件。

我们用这两组邮件,对过滤器进行"训练"。这两组邮件的规模越大,训练效果就越好。Paul Graham使用的邮件规模,是正常邮件和垃圾邮件各4000封。

"训练"过程很简单。首先,解析所有邮件,提取每一个词。然后,计算每个词语在正常邮件和垃圾邮件中的出现频率。比如,我们假定"sex"这个词,在4000封垃圾邮件中,有200封包含这个词,那么它的出现频率就是5%;而在4000封正常邮件中,只有2封包含这个词,那么出现频率就是0.05%。(【注释】如果某个词只出现在垃圾邮件中,Paul Graham就假定,它在正常邮件的出现频率是1%,反之亦然。这样做是为了避免概率为0。随着邮件数量的增加,计算结果会自动调整。)

有了这个初步的统计结果,过滤器就可以投入使用了。

1.3. 十、联合概率的计算

做完上面一步,请问我们能否得出结论,这封新邮件就是垃圾邮件?

回答是不能。因为一封邮件包含很多词语,一些词语(比如sex)说这是垃圾邮件,另一些说这不是。你怎么知道以哪个词为准?

Paul Graham的做法是,选出这封信中P(S|W)最高的15个词,计算它们的联合概率

所谓联合概率,就是指在多个事件发生的情况下,另一个事件发生概率有多大。比如,已知W1和W2是两个不同的词语,它们都出现在某封电子邮件之中,那么这封邮件是垃圾邮件的概率,就是联合概率。

1.4. 十一、最终的计算公式

将上面的公式扩展到15个词的情况,就得到了最终的概率计算公式:

P=1-(1-p1)*(1-p2)*(1-p3);

一封邮件是不是垃圾邮件,就用这个式子进行计算

1.5. 。这时我们还需要一个用于比较的门槛值。Paul Graham的门槛值是0.9,概率大于0.9,

表示15个词联合认定,这封邮件有90%以上的可能属于垃圾邮件;概率小于0.9,就表示是正常邮件。

有了这个公式以后,一封正常的信件即使出现sex这个词,也不会被认定为垃圾邮件了。

参考资料

贝叶斯推断及其互联网应用(二):过滤垃圾邮件 - 阮一峰的网络日志.html

Atitit 贝叶斯算法的原理以及垃圾邮件分类的原理

作者:: 绰号:老哇的爪子 ( 全名::Attilax Akbar Al Rapanui 阿提拉克斯 阿克巴 阿尔 拉帕努伊 )

汉字名:艾提拉(艾龙),   EMAIL:1466519819@qq.com

转载请注明来源: http://www.cnblogs.com/attilax/

Atiend

Atitti 文本分类  以及 垃圾邮件 判断原理 以及贝叶斯算法的应用解决方案的更多相关文章

  1. Atitit 贝叶斯算法的原理以及垃圾邮件分类的原理

    Atitit 贝叶斯算法的原理以及垃圾邮件分类的原理 1.1. 最开始的垃圾邮件判断方法,使用contain包含判断,只能一个关键词,而且100%概率判断1 1.2. 元件部件串联定律1 1.3. 垃 ...

  2. 【十大算法实现之naive bayes】朴素贝叶斯算法之文本分类算法的理解与实现

    关于bayes的基础知识,请参考: 基于朴素贝叶斯分类器的文本聚类算法 (上) http://www.cnblogs.com/phinecos/archive/2008/10/21/1315948.h ...

  3. 什么是机器学习的分类算法?【K-近邻算法(KNN)、交叉验证、朴素贝叶斯算法、决策树、随机森林】

    1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类 ...

  4. Naive Bayes(朴素贝叶斯算法)[分类算法]

    Naïve Bayes(朴素贝叶斯)分类算法的实现 (1) 简介: (2)   算法描述: (3) <?php /* *Naive Bayes朴素贝叶斯算法(分类算法的实现) */ /* *把. ...

  5. 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)

    朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...

  6. Machine Learning for hackers读书笔记(三)分类:垃圾邮件过滤

    #定义函数,打开每一个文件,找到空行,将空行后的文本返回为一个字符串向量,该向量只有一个元素,就是空行之后的所有文本拼接之后的字符串 #很多邮件都包含了非ASCII字符,因此设为latin1就可以读取 ...

  7. 朴素贝叶斯算法——实现新闻分类(Sklearn实现)

    1.朴素贝叶斯实现新闻分类的步骤 (1)提供文本文件,即数据集下载 (2)准备数据 将数据集划分为训练集和测试集:使用jieba模块进行分词,词频统计,停用词过滤,文本特征提取,将文本数据向量化 停用 ...

  8. 基于贝叶斯算法实现简单的分类(java)

    参考文章:https://blog.csdn.net/qq_32690999/article/details/78737393 项目代码目录结构 模拟训练的数据集 核心代码 Bayes.java pa ...

  9. 基于Naive Bayes算法的文本分类

    理论 什么是朴素贝叶斯算法? 朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关.举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果 ...

随机推荐

  1. Java 元注解

    元注解@Target,@Retention,@Documented,@Inherited * * @Target 表示该注解用于什么地方,可能的 ElemenetType 参数包括: * Elemen ...

  2. PHP内核探索:数组与链表

    在C语言中,我们可以自定义各种各样的数据结构,用来把很多数据保存在一个变量里面,但是每种数据结构都有自己的优缺点,PHP内核规模如此庞大,是否已经找到了一些非常棒的解决方法呢? 我们在选择各种数据结构 ...

  3. hdu 3065 AC自动机

    // hdu 3065 AC自动机 // // 题目大意: // // 给你n个短串,然后给你一个长串,问:各个短串在长串中,出现了多少次 // // 解题思路: // // AC自动机,插入,构建, ...

  4. java内存泄漏

    java内存泄漏主要分成两个方面: (1)堆中申请的空间没有被释放 (2)对象已不在被使用,但是仍然存在在内存当中 以下集中情况可能会导致内存泄漏 (1)静态集合的使用hashmap和vector,静 ...

  5. Python学习之路-Day4

    1.函数 函数定义 def  func(aa):         def:表示函数的关键字  func:函数名,即函数的名称,可根据函数名调用函数 print('.....')        prin ...

  6. ps(process status)

    1.PS ps -a(all):显示现行终端机下的所有进程,包括其他用户的进程: ps -ax: 同时加上x参数会显示没有控制终端的进程. ps  -j:显示与作业有关的信息:会话ID.进程组ID等 ...

  7. word 多级列表设置

    今天写论文碰到了这个问题, 希望能出现这样的效果: 第一章 1.1 1.2 第二章 2.1 2.2 ...... 为了达到这个效果,晕死了.因为我的标题不是普通的默认标题一标题二   比如同济一标题 ...

  8. fuck me on github

    前几天写了一篇<博客园添加Fork me on GitHub彩带>,有博友评论,说他看到有的彩带上写着“Fuck me on GitHub”,当时我就笑喷了,有意思,哈哈! 昨天正好有时间 ...

  9. NOSQL 数据库 CodernityDB

    CodernityDB 是一个开源的纯 Python 实现的.无第三方依赖.支持多平台的 NoSQL 数据库. 关键特性: 纯 Python 开发 支持多索引 快速 (每秒将近10万的写入和超过10万 ...

  10. guzzle调用失败-缺少guzzle

    用composer安装了,但是目前为止还有问题.开发环境是 WAMP PHP5.4.12. 已经打开PHP.ini 的SSL扩展,现在还是提示缺少 curl-ca-bundle.cr 报错 No sy ...