最喜欢的算法(们) - Levenshtein distance
String Matching: Levenshtein distance
- Purpose: to use as little effort to convert one string into the other
- Intuition behind the method: replacement, addition or deletion of a charcter in a string
- Steps
Step |
Description |
---|---|
1 |
Set n to be the length of s. Set m to be the length of t. If n = 0, return m and exit. If m = 0, return n and exit. Construct a matrix containing 0..m rows and 0..n columns. |
2 |
Initialize the first row to 0..n. Initialize the first column to 0..m. |
3 |
Examine each character of s (i from 1 to n). |
4 |
Examine each character of t (j from 1 to m). |
5 |
If s[i] equals t[j], the cost is 0. If s[i] doesn't equal t[j], the cost is 1. |
6 |
Set cell d[i,j] of the matrix equal to the minimum of: a. The cell immediately above plus 1: d[i-1,j] + 1. b. The cell immediately to the left plus 1: d[i,j-1] + 1. c. The cell diagonally above and to the left plus the cost: d[i-1,j-1] + cost. |
7 |
After the iteration steps (3, 4, 5, 6) are complete, the distance is found in cell d[n,m]. |
Example
This section shows how the Levenshtein distance is computed when the source string is "GUMBO" and the target string is "GAMBOL".
Steps 1 and 2
G | U | M | B | O | ||
0 | 1 | 2 | 3 | 4 | 5 | |
G | 1 | |||||
A | 2 | |||||
M | 3 | |||||
B | 4 | |||||
O | 5 | |||||
L | 6 |
Steps 3 to 6 When i = 1
G | U | M | B | O | ||
0 | 1 | 2 | 3 | 4 | 5 | |
G | 1 | 0 | ||||
A | 2 | 1 | ||||
M | 3 | 2 | ||||
B | 4 | 3 | ||||
O | 5 | 4 | ||||
L | 6 | 5 |
Steps 3 to 6 When i = 2
G | U | M | B | O | ||
0 | 1 | 2 | 3 | 4 | 5 | |
G | 1 | 0 | 1 | |||
A | 2 | 1 | 1 | |||
M | 3 | 2 | 2 | |||
B | 4 | 3 | 3 | |||
O | 5 | 4 | 4 | |||
L | 6 | 5 | 5 |
Steps 3 to 6 When i = 3
G | U | M | B | O | ||
0 | 1 | 2 | 3 | 4 | 5 | |
G | 1 | 0 | 1 | 2 | ||
A | 2 | 1 | 1 | 2 | ||
M | 3 | 2 | 2 | 1 | ||
B | 4 | 3 | 3 | 2 | ||
O | 5 | 4 | 4 | 3 | ||
L | 6 | 5 | 5 | 4 |
Steps 3 to 6 When i = 4
G | U | M | B | O | ||
0 | 1 | 2 | 3 | 4 | 5 | |
G | 1 | 0 | 1 | 2 | 3 | |
A | 2 | 1 | 1 | 2 | 3 | |
M | 3 | 2 | 2 | 1 | 2 | |
B | 4 | 3 | 3 | 2 | 1 | |
O | 5 | 4 | 4 | 3 | 2 | |
L | 6 | 5 | 5 | 4 | 3 |
Steps 3 to 6 When i = 5
G | U | M | B | O | ||
0 | 1 | 2 | 3 | 4 | 5 | |
G | 1 | 0 | 1 | 2 | 3 | 4 |
A | 2 | 1 | 1 | 2 | 3 | 4 |
M | 3 | 2 | 2 | 1 | 2 | 3 |
B | 4 | 3 | 3 | 2 | 1 | 2 |
O | 5 | 4 | 4 | 3 | 2 | 1 |
L | 6 | 5 | 5 | 4 | 3 | 2 |
Step 7
The distance is in the lower right hand corner of the matrix, i.e. 2. This corresponds to our intuitive realization that "GUMBO" can be transformed into "GAMBOL" by substituting "A" for "U" and adding "L" (one substitution and 1 insertion = 2 changes).
最喜欢的算法(们) - Levenshtein distance的更多相关文章
- Java 比较两个字符串的相似度算法(Levenshtein Distance)
转载自: https://blog.csdn.net/JavaReact/article/details/82144732 算法简介: Levenshtein Distance,又称编辑距离,指的是两 ...
- 字符串相似度算法(编辑距离Levenshtein Distance)的应用场景
应用场景 DNA分析: 将DNA的一级序列如β-球蛋白基因的第一个外显子(Exon)转化为分子“结构图”,然后由所得“结构图”提取图的不变量,如分子连接性指数.以图的不变量作为自变量,再由相似度计算公 ...
- 用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)
在搞验证码识别的时候需要比较字符代码的相似度用到"编辑距离算法",关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Dist ...
- Levenshtein Distance(编辑距离)算法与使用场景
前提 已经很久没深入研究过算法相关的东西,毕竟日常少用,就算死记硬背也是没有实施场景导致容易淡忘.最近在做一个脱敏数据和明文数据匹配的需求的时候,用到了一个算法叫Levenshtein Distanc ...
- C#实现Levenshtein distance最小编辑距离算法
Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑 ...
- Levenshtein Distance算法(编辑距离算法)
编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...
- Magic Number(Levenshtein distance算法)
Magic Number Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- 字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)
在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...
- 扒一扒编辑距离(Levenshtein Distance)算法
最近由于工作需要,接触了编辑距离(Levenshtein Distance)算法.赶脚很有意思.最初百度了一些文章,但讲的都不是很好,读起来感觉似懂非懂.最后还是用google找到了一些资料才慢慢理解 ...
随机推荐
- asp.net LINQ LinqDataSource控件显示数据和DropdownList显示数据
using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...
- JS实现的随机显示图片
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xht ...
- spring 的aop proxy 代理
前些日子一朋友在需要在目标对象中进行自我调用,且需要实施相应的事务定义,且网上的一种通过BeanPostProcessor的解决方案是存在问题的.因此专门写此篇帖子分析why. 1.预备知识 aop概 ...
- 关于16年2月14日以后上传AppStore出现:Missing iOS Distribution signing identity for...的问题
2016年2月14日以后打包上传AppStore会发现出现如下的问题: 导致问题的原因是:下边这个证书过期了 以下是苹果官方给出的回应: Thanks for bringing this to the ...
- 如何把apdu[decode_len]打印出来
memcpy(data, &apdu[decode_len], apdu_len - decode_len); int i = 0; for(i=0;i<apdu_len;i ...
- Linux内核的总结认识
转载博文: http://www.linuxdiyf.com/linux/11234.html 1.内核是怎样实现其管理的职能? 以前在学校时一直不能理解内核是怎么做管理?比如内核如何知道在什么时候对 ...
- alphaRGB 转 RGB、16位
struct xColor { BYTE b, g, r, a; }; struct RGBColor { BYTE b, g, r; }; //void operator <<(RGBC ...
- CSS基础选择器
1.html负责结构,css负责样式,js负责行为. css是写在head标签里面,容器style标签里面, <style type="text/css"> body{ ...
- WebAPI的初步认识(CURD)
1.创建一个MVC项目,选择API 2.在Models层里添加Product类,IProductRepository接口,ProductRepository类 public class Product ...
- 在Mac上搭建本地Apache服务器一些注意点
一般在开发ios程序中,我们需要使用到和服务器的交互操作. 一般我们在Mac上使用Apache来搭建服务器.数据库采用MySQL.在Mac中Apache是自带的.所有,我们可以不需要额外的去Apple ...