U3-1

Here are some sets:

(1) R both and

(2) ∅ both and

(3) (1,+∞) open set

(4) [−1,0]  closed set, -1 and 0 , which are not interior points, belong to the set.

(5) {1,2,3} none of them is interior point. They are isolated points. And the set is discrete set. closed set

(6) {y|y=2*x^2+1,x∈[0,2)} =[1,+∞)  closed set =[1,9), cuz 9 is a boundary point and is not included.

(7) Q × neither open set nor closed set

(8) Qc × neither open set nor closed set

Among the above sets, the total number of open set is: 3

the total number of closed set is:

U3-2

Consider the set S=[1,2)⋃{0}

Which of the following statements about S are TRUE?

is not an interior point of S is not an interior point of Sx=0 is not a limit point of Sx=2 is not a limit point of S

Given a set S ⊂ R, a point l ∈ R is called a limit point £4Å:§ or point of accumulation(‡:) of the set S, if every deleted δ-neighborhood of l contains one or more points of S.

U4-2

Given the set of numbers S={1,1.1,0.9,1.01,0.99,1.001,0.999,...}

S={1}⋃{1+0.1n|n∈N}⋃{1−0.1n|n∈N}

∀a∈S,a≤1.1anda≥0.9

∀b<1.1,1.1∈S>b

∀c>0.9,0.9∈S<c

So 1.1 is the LUB of S, and 0.9 is the GLB of S.

∀ε>0,∃n∈N, s.t.1+0.1^n∈S and 1+0.1^n−1=0.1^n<ε  1的任意去心邻域和S的交集不为空

So 1 is a limit point of S.

U5-2

Given following numbers:

e,

π,

0,

(√3−√2)/(√3+√2),  = 5 - 2 √ 6  ==> x^2 - 10 x + 1 = 0

√2+√3+√5,  可构造出6次整数系数方程的解是√2+√3+√5

2+3i,  x^2 - 4 x +13 = 0

4/7

Of all the numbers above,

Which ones are algebraics?

0, 4/7

Which ones are transcendentals?

e, π,

Which ones are irrational numbers?

e, π, (√3−√2)/(√3+√2), √2+√3+√5

清华微积分-1_Ch1习题的更多相关文章

  1. 数学常数e的含义

    转载:   http://www.ruanyifeng.com/blog/2011/07/mathematical_constant_e.html 作者: 阮一峰 日期: 2011年7月 9日 1. ...

  2. SymPy解方程的实现

    https://www.cnblogs.com/zgyc/p/6277562.html SymPy完全是用Python写的,并不需要外部的库 原理: 单纯用语言内置的运算与变量解决的是,由值求结果.如 ...

  3. 柯朗微积分与数学分析习题选解(1.2 节 d)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  4. 柯朗微积分与数学分析习题选解(1.3 节 c)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  5. 柯朗微积分与数学分析习题选解(1.3 节 b)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  6. 柯朗微积分与数学分析习题选解(1.1 节 e)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  7. 柯朗微积分与数学分析习题选解(1.1 节 a)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  8. 《清华梦的粉碎》by王垠

     清华梦的诞生 小时候,妈妈给我一个梦.她指着一个大哥哥的照片对我说,这是爸爸的学生,他考上了清华大学,他是我们中学的骄傲.长大后,你也要进入清华大学读书,为我们家争光.我不知道清华是什么样子,但是我 ...

  9. 清华梦的粉碎—写给清华大学的退学申请(转自王垠Blog)

    清华梦的诞生 小时候,妈妈给我一个梦.她指着一个大哥哥的照片对我说,这是爸爸的学生,他考上了清华大学,他是我们中学的骄傲.长大后,你也要进入清华大学读书,为我们家争光.我不知道清华是什么样子,但是我知 ...

随机推荐

  1. windos系统定时执行批处理文件(bat文件)

    Win7怎么设置定时自动执行任务? 点击开始按钮,依次选择打开“所有程序—附件—系统工具”,找到“任务计划程序”即可打开Win7系统的任务计划设置面板.也可以点击Win7开始按钮,在多功能搜索框中输入 ...

  2. Linux json解析jq

    jq是一个linux下很方便的json解析器,平时看json文件都是一行混在一起的,非常不适合阅读. https://stedolan.github.io/jq/download/ 直接到官网上下载, ...

  3. JSON,Bean,XML,List,Map

    http://blog.csdn.net/superit401/article/details/51728929 JSON-lib这个Java类包用于把bean,map和XML转换成JSON并能够把J ...

  4. Evolutionary Computing: multi-objective optimisation

    1. What is multi-objective optimisation [wikipedia]: Multi-objective optimization (also known as mul ...

  5. .net 导出Excel功能

    将DataSet对象导出成Excel文档 一.不带格式控制 void btnExport_Click(object sender, EventArgs e) { IList<string> ...

  6. <js>实现回车键登陆方法,并处理谷歌与火狐不兼容的问题

    1.在body中添加onkeydown事件 <body onkeydown="keyLogin(event);">2.使用js相应登陆添加方法//添加回车登陆事件 fu ...

  7. struts中Cookie实现记住密码

    HttpServletRequest request = ServletActionContext.getRequest(); Cookie[] cookies = request.getCookie ...

  8. x-csrf-token

  9. asp.net 解决 "回发或回调参数无效" 一些常见解决方案

    一.回发或回调参数无效,出现下图错误, 常见解决方案: 1.在页面的<%@ Page Language="C#"  AutoEventWireup="true&qu ...

  10. html快速入门(基础教程+资源推荐)

    1.html究竟是什么? 从字面上理解,html是超文本标记语言hyper text mark-up language的首字母缩写,指的是一种通用web页面描述语言,是用来描述我们打开浏览器就能看到的 ...