U3-1

Here are some sets:

(1) R both and

(2) ∅ both and

(3) (1,+∞) open set

(4) [−1,0]  closed set, -1 and 0 , which are not interior points, belong to the set.

(5) {1,2,3} none of them is interior point. They are isolated points. And the set is discrete set. closed set

(6) {y|y=2*x^2+1,x∈[0,2)} =[1,+∞)  closed set =[1,9), cuz 9 is a boundary point and is not included.

(7) Q × neither open set nor closed set

(8) Qc × neither open set nor closed set

Among the above sets, the total number of open set is: 3

the total number of closed set is:

U3-2

Consider the set S=[1,2)⋃{0}

Which of the following statements about S are TRUE?

is not an interior point of S is not an interior point of Sx=0 is not a limit point of Sx=2 is not a limit point of S

Given a set S ⊂ R, a point l ∈ R is called a limit point £4Å:§ or point of accumulation(‡:) of the set S, if every deleted δ-neighborhood of l contains one or more points of S.

U4-2

Given the set of numbers S={1,1.1,0.9,1.01,0.99,1.001,0.999,...}

S={1}⋃{1+0.1n|n∈N}⋃{1−0.1n|n∈N}

∀a∈S,a≤1.1anda≥0.9

∀b<1.1,1.1∈S>b

∀c>0.9,0.9∈S<c

So 1.1 is the LUB of S, and 0.9 is the GLB of S.

∀ε>0,∃n∈N, s.t.1+0.1^n∈S and 1+0.1^n−1=0.1^n<ε  1的任意去心邻域和S的交集不为空

So 1 is a limit point of S.

U5-2

Given following numbers:

e,

π,

0,

(√3−√2)/(√3+√2),  = 5 - 2 √ 6  ==> x^2 - 10 x + 1 = 0

√2+√3+√5,  可构造出6次整数系数方程的解是√2+√3+√5

2+3i,  x^2 - 4 x +13 = 0

4/7

Of all the numbers above,

Which ones are algebraics?

0, 4/7

Which ones are transcendentals?

e, π,

Which ones are irrational numbers?

e, π, (√3−√2)/(√3+√2), √2+√3+√5

清华微积分-1_Ch1习题的更多相关文章

  1. 数学常数e的含义

    转载:   http://www.ruanyifeng.com/blog/2011/07/mathematical_constant_e.html 作者: 阮一峰 日期: 2011年7月 9日 1. ...

  2. SymPy解方程的实现

    https://www.cnblogs.com/zgyc/p/6277562.html SymPy完全是用Python写的,并不需要外部的库 原理: 单纯用语言内置的运算与变量解决的是,由值求结果.如 ...

  3. 柯朗微积分与数学分析习题选解(1.2 节 d)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  4. 柯朗微积分与数学分析习题选解(1.3 节 c)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  5. 柯朗微积分与数学分析习题选解(1.3 节 b)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  6. 柯朗微积分与数学分析习题选解(1.1 节 e)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  7. 柯朗微积分与数学分析习题选解(1.1 节 a)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  8. 《清华梦的粉碎》by王垠

     清华梦的诞生 小时候,妈妈给我一个梦.她指着一个大哥哥的照片对我说,这是爸爸的学生,他考上了清华大学,他是我们中学的骄傲.长大后,你也要进入清华大学读书,为我们家争光.我不知道清华是什么样子,但是我 ...

  9. 清华梦的粉碎—写给清华大学的退学申请(转自王垠Blog)

    清华梦的诞生 小时候,妈妈给我一个梦.她指着一个大哥哥的照片对我说,这是爸爸的学生,他考上了清华大学,他是我们中学的骄傲.长大后,你也要进入清华大学读书,为我们家争光.我不知道清华是什么样子,但是我知 ...

随机推荐

  1. 回调函数及数组中sort()方法实现排序的原理

    1.回调函数:把一个方法A当一个参数值传递到另外一个函数B中,在B执行的过程当中我们随时根据需求让A方法执行:   什么是回调 :它是异步编程基本的方法,需要异步处理的时候一般采用后续传递的方式,将后 ...

  2. mybatis动态切换数据源

    (#)背景:由于业务的需求,导致需要随时切换15个数据源,此时不能low逼的去写十几个mapper,所以想到了实现一个数据源的动态切换 首先要想重写多数据源,那么你应该理解数据源的一个概念是什么,Da ...

  3. Deep Learning 18:DBM的学习及练习_读论文“Deep Boltzmann Machines”的笔记

    前言 论文“Deep Boltzmann Machines”是Geoffrey Hinton和他的大牛学生Ruslan Salakhutdinov在论文“Reducing the Dimensiona ...

  4. 12 个CSS 高级技巧汇总[转载]

    使用 :not() 在菜单上应用/取消应用边框 给body添加行高 所有一切都垂直居中 逗号分隔的列表 使用负的 nth-child 选择项目 对图标使用SVG 优化显示文本 对纯CSS滑块使用 ma ...

  5. android持久化技术

    Android系统提供了3种持久化技术,所谓持久化技术是指将内存中的书籍保存在存储设备中. 1.文件存储 2.sharedPreference存储 3.数据库存储 除此之外,还可以将数据保存在SD卡中

  6. 删除文件夹工具【fuckwinfsdel】,如 node_modules

    强力删除文件夹. 安装 npm install fuckwinfsdel -g 使用 fuckwinfsdel youdir 例 fuckwinfsdel node_modules 项目地址 http ...

  7. 基于Red5的视频直播平台

    搭建环境:Win2008 server + jdk1.8+red5-server-1.0.6 下载地址:https://github.com/Red5 修改启动配置文件(修改为jdk路径): 安装模版 ...

  8. Apache Commons Collections

    http://commons.apache.org/proper/commons-collections/userguide.html 1. Utilities SetUtils Collection ...

  9. flask笔记3-模板

    flask框架使用jinja2模板引擎.简单的说,模板就是一个纯html文件中夹杂着占位符,在渲染模板时用真实变量值替换占位符,就形成了最终的前台页面. 1.模板存放位置: 默认情况下,flask在根 ...

  10. InventSumDelta表的作用

    https://groups.google.com/forum/#!topic/microsoft.public.axapta.programming/rRfbJo9M0dk The purpose ...