如何在Python中实现这五类强大的概率分布
R编程语言已经成为统计分析中的事实标准。但在这篇文章中,我将告诉你在Python中实现统计学概念会是如此容易。我要使用Python实现一些离散和连续的概率分布。虽然我不会讨论这些分布的数学细节,但我会以链接的方式给你一些学习这些统计学概念的好资料。在讨论这些概率分布之前,我想简单说说什么是随机变量(random variable)。随机变量是对一次试验结果的量化。
举个例子,一个表示抛硬币结果的随机变量可以表示成
Python
1
2
|
X = {1 如果正面朝上,
2 如果反面朝上}
|
随机变量是一个变量,它取值于一组可能的值(离散或连续的),并服从某种随机性。随机变量的每个可能取值的都与一个概率相关联。随机变量的所有可能取值和与之相关联的概率就被称为概率分布(probability distributrion)。
我鼓励大家仔细研究一下scipy.stats
模块。
概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。
离散概率分布也称为概率质量函数(probability mass function)。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等。
连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布。
若想了解更多关于离散和连续随机变量的知识,你可以观看可汗学院关于概率分布的视频。
二项分布(Binomial Distribution)
服从二项分布的随机变量X表示在n个独立的是/非试验中成功的次数,其中每次试验的成功概率为p。
E(X) = np, Var(X) = np(1−p)
如果你想知道每个函数的原理,你可以在IPython笔记本中使用help file命令。 E(X)表示分布的期望或平均值。
键入stats.binom?
了解二项分布函数binom
的更多信息。
二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率是多少?
假设在该试验中正面朝上的概率为0.3,这意味着平均来说,我们可以期待有3次是硬币正面朝上的。我定义掷硬币的所有可能结果为k = np.arange(0,11)
:你可能观测到0次正面朝上、1次正面朝上,一直到10次正面朝上。我使用stats.binom.pmf
计算每次观测的概率质量函数。它返回一个含有11个元素的列表(list),这些元素表示与每个观测相关联的概率值。
您可以使用.rvs
函数模拟一个二项随机变量,其中参数size
指定你要进行模拟的次数。我让Python返回10000个参数为n和p的二项式随机变量。我将输出这些随机变量的平均值和标准差,然后画出所有的随机变量的直方图。
泊松分布(Poisson Distribution)
一个服从泊松分布的随机变量X,表示在具有比率参数(rate parameter)λ的一段固定时间间隔内,事件发生的次数。参数λ告诉你该事件发生的比率。随机变量X的平均值和方差都是λ。
E(X) = λ, Var(X) = λ
泊松分布的例子:已知某路口发生事故的比率是每天2次,那么在此处一天内发生4次事故的概率是多少?
让我们考虑这个平均每天发生2起事故的例子。泊松分布的实现和二项分布有些类似,在泊松分布中我们需要指定比率参数。泊松分布的输出是一个数列,包含了发生0次、1次、2次,直到10次事故的概率。我用结果生成了以下图片。
你可以看到,事故次数的峰值在均值附近。平均来说,你可以预计事件发生的次数为λ。尝试不同的λ和n的值,然后看看分布的形状是怎么变化的。
现在我来模拟1000个服从泊松分布的随机变量。
正态分布(Normal Distribution)
正态分布是一种连续分布,其函数可以在实线上的任何地方取值。正态分布由两个参数描述:分布的平均值μ和方差σ2 。
E(X) = μ, Var(X) = σ2
正态分布的取值可以从负无穷到正无穷。你可以注意到,我用stats.norm.pdf
得到正态分布的概率密度函数。
β分布(Beta Distribution)
β分布是一个取值在 [0, 1] 之间的连续分布,它由两个形态参数α和β的取值所刻画。
β分布的形状取决于α和β的值。贝叶斯分析中大量使用了β分布。
当你将参数α和β都设置为1时,该分布又被称为均匀分布(uniform distribution)。尝试不同的α和β取值,看看分布的形状是如何变化的。
指数分布(Exponential Distribution)
指数分布是一种连续概率分布,用于表示独立随机事件发生的时间间隔。比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔、中文维基百科新条目出现的时间间隔等等。
我将参数λ设置为0.5,并将x的取值范围设置为 $[0, 15]$ 。
接着,我在指数分布下模拟1000个随机变量。scale
参数表示λ的倒数。函数np.std
中,参数ddof
等于标准偏差除以 $n-1$ 的值。
结语(Conclusion)
概率分布就像盖房子的蓝图,而随机变量是对试验事件的总结。我建议你去看看哈佛大学数据科学课程的讲座,Joe Blitzstein教授给了一份摘要,包含了你所需要了解的关于统计模型和分布的全部。
如何在Python中实现这五类强大的概率分布的更多相关文章
- 关于如何在Python中使用静态、类或抽象方法的权威指南
Python中方法的工作方式 方法是存储在类属性中的函数,你可以用下面这种方式声明和访问一个函数 >>> class Pizza(object): ... def __init__( ...
- 如何在Python中从零开始实现随机森林
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 决策树可能会受到高度变异的影响,使得结果对所使用的特定测试数据而言变得脆弱. 根据您的测试数据样本构建多个模型(称为套袋)可以减少这种差异,但是 ...
- 面试官问我:如何在 Python 中解析和修改 XML
摘要:我们经常需要解析用不同语言编写的数据.Python提供了许多库来解析或拆分用其他语言编写的数据.在此 Python XML 解析器教程中,您将学习如何使用 Python 解析 XML. 本文分享 ...
- 非常易于理解‘类'与'对象’ 间 属性 引用关系,暨《Python 中的引用和类属性的初步理解》读后感
关键字:名称,名称空间,引用,指针,指针类型的指针(即指向指针的指针) 我读完后的理解总结: 1. 我们知道,python中的变量的赋值操作,变量其实就是一个名称name,赋值就是将name引用到一个 ...
- python中如何统计一个类的实例化对象
类中的静态变量 需要通过类名.静态变量名 来修改 :通过对象不能修改 python中如何统计一个类的实例化对象?? class Person: #静态变量count,用于记录类被实例化的次数 coun ...
- 如何在Python中快速画图——使用Jupyter notebook的魔法函数(magic function)matplotlib inline
如何在Python中快速画图--使用Jupyter notebook的魔法函数(magic function)matplotlib inline 先展示一段相关的代码: #we test the ac ...
- 如何在Python中使用Linux epoll
如何在Python中使用Linux epoll 内容 介绍 阻塞套接字编程示例 异步套接字和Linux epoll的好处 epoll的异步套接字编程示例 性能考量 源代码 介绍 从2.6版开始,Pyt ...
- 如何在Python 中使用UTF-8 编码 && Python 使用 注释,Python ,UTF-8 编码 , Python 注释
如何在Python 中使用UTF-8 编码 && Python 使用 注释,Python ,UTF-8 编码 , Python 注释 PIP $ pip install beauti ...
- 如何在Python中加速信号处理
如何在Python中加速信号处理 This post is the eighth installment of the series of articles on the RAPIDS ecosyst ...
随机推荐
- 解决OX10.11.4 不能授权的问题
Did apple server have some maintenance? Open your Terminal and put this command sudo mkdir -p /Users ...
- C++ 小工具一键解决SVN Clean Up 失败的问题
参考文章: 1.http://blog.csdn.net/luochao_tj/article/details/46358145 2.http://blog.csdn.net/segen_jaa/ar ...
- 【译】SQL Server索引进阶第八篇:唯一索引
原文:[译]SQL Server索引进阶第八篇:唯一索引 索引设计是数据库设计中比较重要的一个环节,对数据库的性能其中至关重要的作用,但是索引的设计却又不是那么容易的事情,性能也不是那么轻易就 ...
- SQL学习整理_2
字符串处理,字符串函数不会改变存储在表中的数据内容,他们只是把函数结果当成查询结果返回. 1. SELECT right(name,2) FROM my_list --从my_list列表中取出n ...
- 【转】24Cxx 系列EEPROM通用程序及应用
关于I2C 学习的时候介绍得最多的就是24C02 这里存储EEPROM了,但学的时候基本只是讲讲简单的I2C 的总线数据传输而已,即使先gooogle上搜索也绝大部分这这样的文章,很少有说到如何在实际 ...
- 常用git命令纪录
git branch xxx 新建分支xxx git branch -a 查看所有分支(包括远程) git remote add origin http://xxx.git 在本地添加一个远程仓库, ...
- centos7 使用systemd 自定义关机前脚本
systemd (centos7) 需求,关机前执行脚本 关机脚本vi /usr/bin/shutdown_cust.sh#!/bin/bashecho "zhengchangguanji& ...
- http-code 未译
1xx Informational Request received, continuing process. This class of status code indicates a provis ...
- ios cell时间相同隐藏算法
- python pymysql和orm
pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同. 1. 安装 管理员打开cmd,切换到python的安装路径,进入到Scripts目录下(如:C:\Users\A ...