题目描述: k一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
时间限制:1秒 空间限制:32768k
斐波那契数列指的是这样一个数列: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368。
可以观察到,从第3个数开始,每个数的值都等于前连个数之和。
同时,定义f(0)=0, f(1)=1.
则 f(2)=f(1)+f(0)=1;
f(3)=f(2)+f(1)=2;
... 依次类推,
f(n)=f(n-1)+f(n-2)
该问题实质是斐波那契数列求和,递推公式为 f(n)=f(n-1)+f(n-2);
可以考虑,小青蛙每一步跳跃只有两种选择:一是再跳一级阶梯到达第 i 级阶梯,此时小青蛙处于第 i-1 级阶梯;或者再跳两级阶梯到达第 i 级阶梯,此时小青蛙处于第 i-2 级阶梯。
于是,i 级阶梯的跳法总和依赖于前 i-1 级阶梯的跳法总数f(i-1)和前 i-2 级阶梯的跳法总数f(i-2)。因为只有两种可能性,所以,f(i)=f(i-1)+f(i-2);
依次类推,可以递归求出n级阶梯跳法之和。
递归算法实现:
public int JumpFloor(int target){
if(target<0)
return 0;
int[] fib={0,1,2};
if(target<3)
return fib[target];
return JumpFloor(target-1)+JumpFloor(target-2);
}
备注:此方法不满足空间要求(递归空间)。
非递归算法:
public int JumpFloor(int target){
if(target<0)
return 0;
int[] fib={0,1,2};
if(target<3)
return fib[target];
int total=0;
int firstElem=1;
int secondElem=2;
for(int i=3;i<=target;i++){
total=firstElem+secondElem;
firstElem=secondElem;
secondElem=total; //迭代
}
return total;
}
转自:http://www.nowcoder.com/questionTerminal/f4d47027d49a48b28274f6d4e0b6ff79?pos=12&tagId=0&orderByHotValue=1
题目描述: k一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。的更多相关文章
- 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
// test14.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> #include< ...
- 变态跳台阶-一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
class Solution { public: int jumpFloorII(int number) { ) ; ) ; *jumpFloorII(number-); } };
- 跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
class Solution { public: int jumpFloor(int number) { ) ; ) ; )+jumpFloor(number-); } }; 如果先建立数组,然后利用 ...
- 将n个东西分成n1,n2,n3,n4,....nr 共 r组分给r个人有多少种分法。
(n!/(n1! *n2! *n3!..nr!) ) * r!/( 同数量组A的数量! 同数量组B的数量!....) 比方20个东西分成2,2,,2,2 3,3,3,3 8组分给8个人有多少种 ...
- 剑指offer10:2*1的小矩形横着或者竖着去覆盖2*n的大矩形,总共有多少种方法?
1. 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 2.思路和方法 思路:(下面说到的x*y的矩形,x是宽 ...
- PHP的排列组合问题 分别从每一个集合中取出一个元素进行组合,问有多少种组合?
首先说明这是一个数学的排列组合问题C(m,n) = m!/(n!*(m-n)!) 比如:有集合('粉色','红色','蓝色','黑色'),('38码','39码','40码'),('大号','中号') ...
- 10.我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。 请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形. 请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 是不是发现看不懂,哈哈:编程题就是这样,一定要归纳,手写过程: n ...
- N个苹果分给M个人,有多少种分法
每次分配一个苹果出去,然后再分配N-1个苹果.这里有个注意的地方就是,分那1个苹果的时候,假设还有N个苹果,不是从第一个人开始分,而是从N+1个苹果分配的位置开始,不然的话会产生重复的解.所以i=p不 ...
- 动态规划之----我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
利用动态规划,一共有n列,若从左向右放小矩形,有两种放置方式: 第一种:横着放,即占用两列.此时第二行的前两个空格只能横着放,所有,总的放置次数变为1+num(2*(n-2)),其中2*(n-2)代表 ...
随机推荐
- Sql 常见问题
join on and vs join on where SELECT * FROM Orders LEFT JOIN OrderLines ON OrderLines.OrderID=Orders. ...
- [lua]安卓ndk如何编译lua库
这里说的lua库是标准lua库,不包含tolua,不包含cocos2dx的各种lua扩展,是干净的lua. 参考: http://stackoverflow.com/questions/1229965 ...
- java 字符流与字节流互转
package test; import java.io.BufferedReader; import java.io.ByteArrayInputStream; import java.io.IOE ...
- 带你玩转JavaWeb开发之三 -JS插件实战开发
前提:需要掌握的知识点 填写HTML代码 Element元素中有一个innerHTML属性,这个属性可以填写一段html代码 innerHTML = "<font ...
- 关于MVC4.0中@Styles.Render用法与详解
本文分享于http://keleyi.com/a/bjac/q74dybjc.htm文章,感觉写的蛮好所以就拿过来做笔记了,希望对大家有帮助 最近公司的新项目用了MVC 4.0,接下来一步步把 工作中 ...
- win7 将所有 视图 改为 '详细信息'
1.随便进入某个文件夹->(菜单栏中)查看->选'详细信息' 2.(菜单栏中)工具->文件夹选项->查看->'应用到文件夹'
- mysql 在cento下源码安装
虚拟机改为网络地址转换 (NAT) service network restartping www.baidu.com rpm -qa | grep mysql 有的话通过下面的命令来卸载掉 rpm ...
- web前端程序员真的值这么多钱吗?
对于互联网公司来说用户就是上帝,做好客户体验一切才有可能.所以互联网公司都会把钱砸向前端,Web前端程序员也越来越受到企业争相聘用. 前端工程师工资也越来越高,目前Web前端工程师工作1~2年后通常会 ...
- Trace-如何跟踪某个Job的开销
1.背景 下面是从以往Profiler收集的跟踪文件中提取Job有关数据 ;with cte as( Duration_ms ,CPU CPU_ms,Reads,Writes,StartTime,En ...
- github设置只识别指定类型的文件
原文 # 忽略所有文件 * # 不忽略目录 !*/ # 不忽略文件.gitignore和*.foo !.gitignore !*.foo