时间限制:1秒     空间限制:32768k

斐波那契数列指的是这样一个数列: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368。

可以观察到,从第3个数开始,每个数的值都等于前连个数之和。

同时,定义f(0)=0, f(1)=1.

则 f(2)=f(1)+f(0)=1;

  f(3)=f(2)+f(1)=2;

  ... 依次类推,

  f(n)=f(n-1)+f(n-2)

该问题实质是斐波那契数列求和,递推公式为 f(n)=f(n-1)+f(n-2);

可以考虑,小青蛙每一步跳跃只有两种选择:一是再跳一级阶梯到达第 i 级阶梯,此时小青蛙处于第 i-1 级阶梯;或者再跳两级阶梯到达第 i 级阶梯,此时小青蛙处于第 i-2 级阶梯。

于是,i 级阶梯的跳法总和依赖于前 i-1 级阶梯的跳法总数f(i-1)和前 i-2 级阶梯的跳法总数f(i-2)。因为只有两种可能性,所以,f(i)=f(i-1)+f(i-2);

依次类推,可以递归求出n级阶梯跳法之和。

递归算法实现:

public int JumpFloor(int target){

  if(target<0)

    return 0;

  int[] fib={0,1,2};

  if(target<3)

    return fib[target];

  return JumpFloor(target-1)+JumpFloor(target-2);

}

备注:此方法不满足空间要求(递归空间)。

非递归算法:

public int JumpFloor(int target){

  if(target<0)

    return 0;

  int[] fib={0,1,2};

  if(target<3)

    return fib[target];

  int total=0;

  int firstElem=1;

  int secondElem=2;

  for(int i=3;i<=target;i++){

    total=firstElem+secondElem;

    firstElem=secondElem;

      secondElem=total;  //迭代

  }

  return total;

}

转自:http://www.nowcoder.com/questionTerminal/f4d47027d49a48b28274f6d4e0b6ff79?pos=12&tagId=0&orderByHotValue=1

题目描述: k一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。的更多相关文章

  1. 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

    // test14.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> #include< ...

  2. 变态跳台阶-一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

    class Solution { public: int jumpFloorII(int number) { ) ; ) ; *jumpFloorII(number-); } };

  3. 跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

    class Solution { public: int jumpFloor(int number) { ) ; ) ; )+jumpFloor(number-); } }; 如果先建立数组,然后利用 ...

  4. 将n个东西分成n1,n2,n3,n4,....nr 共 r组分给r个人有多少种分法。

    (n!/(n1! *n2! *n3!..nr!) )   * r!/( 同数量组A的数量! 同数量组B的数量!....) 比方20个东西分成2,2,,2,2   3,3,3,3 8组分给8个人有多少种 ...

  5. 剑指offer10:2*1的小矩形横着或者竖着去覆盖2*n的大矩形,总共有多少种方法?

    1. 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 2.思路和方法 思路:(下面说到的x*y的矩形,x是宽 ...

  6. PHP的排列组合问题 分别从每一个集合中取出一个元素进行组合,问有多少种组合?

    首先说明这是一个数学的排列组合问题C(m,n) = m!/(n!*(m-n)!) 比如:有集合('粉色','红色','蓝色','黑色'),('38码','39码','40码'),('大号','中号') ...

  7. 10.我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。 请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

    我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形. 请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 是不是发现看不懂,哈哈:编程题就是这样,一定要归纳,手写过程: n ...

  8. N个苹果分给M个人,有多少种分法

    每次分配一个苹果出去,然后再分配N-1个苹果.这里有个注意的地方就是,分那1个苹果的时候,假设还有N个苹果,不是从第一个人开始分,而是从N+1个苹果分配的位置开始,不然的话会产生重复的解.所以i=p不 ...

  9. 动态规划之----我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

    利用动态规划,一共有n列,若从左向右放小矩形,有两种放置方式: 第一种:横着放,即占用两列.此时第二行的前两个空格只能横着放,所有,总的放置次数变为1+num(2*(n-2)),其中2*(n-2)代表 ...

随机推荐

  1. Sql 常见问题

    join on and vs join on where SELECT * FROM Orders LEFT JOIN OrderLines ON OrderLines.OrderID=Orders. ...

  2. [lua]安卓ndk如何编译lua库

    这里说的lua库是标准lua库,不包含tolua,不包含cocos2dx的各种lua扩展,是干净的lua. 参考: http://stackoverflow.com/questions/1229965 ...

  3. java 字符流与字节流互转

    package test; import java.io.BufferedReader; import java.io.ByteArrayInputStream; import java.io.IOE ...

  4. 带你玩转JavaWeb开发之三 -JS插件实战开发

    前提:需要掌握的知识点           填写HTML代码 Element元素中有一个innerHTML属性,这个属性可以填写一段html代码 innerHTML = "<font ...

  5. 关于MVC4.0中@Styles.Render用法与详解

    本文分享于http://keleyi.com/a/bjac/q74dybjc.htm文章,感觉写的蛮好所以就拿过来做笔记了,希望对大家有帮助 最近公司的新项目用了MVC 4.0,接下来一步步把 工作中 ...

  6. win7 将所有 视图 改为 '详细信息'

    1.随便进入某个文件夹->(菜单栏中)查看->选'详细信息' 2.(菜单栏中)工具->文件夹选项->查看->'应用到文件夹'

  7. mysql 在cento下源码安装

    虚拟机改为网络地址转换 (NAT) service network restartping www.baidu.com rpm -qa | grep mysql 有的话通过下面的命令来卸载掉 rpm ...

  8. web前端程序员真的值这么多钱吗?

    对于互联网公司来说用户就是上帝,做好客户体验一切才有可能.所以互联网公司都会把钱砸向前端,Web前端程序员也越来越受到企业争相聘用. 前端工程师工资也越来越高,目前Web前端工程师工作1~2年后通常会 ...

  9. Trace-如何跟踪某个Job的开销

    1.背景 下面是从以往Profiler收集的跟踪文件中提取Job有关数据 ;with cte as( Duration_ms ,CPU CPU_ms,Reads,Writes,StartTime,En ...

  10. github设置只识别指定类型的文件

    原文 # 忽略所有文件 * # 不忽略目录 !*/ # 不忽略文件.gitignore和*.foo !.gitignore !*.foo