POJ 1845:Sumdiv 快速幂+逆元
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 16466 | Accepted: 4101 |
Description
Input
Output
Sample Input
2 3
Sample Output
15
Hint
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
要求的是A^B的所有因子的和之后再mod 9901的值。
因为一个数A能够表示成多个素数的幂相乘的形式。即A=(a1^n1)*(a2^n2)*(a3^n3)...(am^nm)。所以这个题就是要求
(1+a1+a1^2+...a1^n1)*(1+a2+a2^2+...a2^n2)*(1+a3+a3^2+...a3^n2)*...(1+am+am^2+...am^nm)
mod 9901。
对于每一个(1+a1+a1^2+...a1^n1) mod 9901
等于 (a1^(n1+1)-1)/(a1-1) mod 9901,这里用到逆元的知识:a/b mod c = (a mod (b*c))/ b
所以就等于(a1^(n1+1)-1)mod (9901*(a1-1)) / (a1-1)。
至于前面的a1^(n1+1),快速幂。
代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std;
#define M 9901 long long p[100008];
int prime[100008]; void isprime()
{
int cnt = 0, i, j;
memset(prime, 0, sizeof(prime)); for (i = 2; i < 100008; i++)
{
if (prime[i] == 0)
{
p[++cnt] = i;
for (j = 2 * i; j <100008;j=j+i)
{
prime[j] = 1;
}
}
}
}
long long getresult(long long A,long long n,long long k)
{
long long b = 1;
while (n > 0)
{
if (n & 1)
{
b = (b*A)%k;
}
n = n >> 1;
A = (A*A)%k;
}
return b;
}
void solve(long long A, long long B)
{
int i;
long long ans = 1;
for (i = 1; p[i] * p[i] <= A; i++)
{
if (A%p[i] == 0)
{
int num = 0;
while (A%p[i] == 0)
{
num++;
A = A / p[i];
}
long long m = (p[i] - 1) * 9901;
ans *= (getresult(p[i], num*B + 1, m) + m - 1) / (p[i] - 1);
ans %= 9901;
}
}
if (A > 1)
{
long long m = 9901 * (A - 1);
ans *= (getresult(A, B + 1, m) + m - 1) / (A - 1);
ans %= 9901;
}
cout << ans << endl;
} int main()
{
long long A, B; isprime(); while (scanf("%lld%lld", &A, &B) != EOF)
{
solve(A, B);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
POJ 1845:Sumdiv 快速幂+逆元的更多相关文章
- POJ 1845 Sumdiv 【二分 || 逆元】
任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...
- poj 1845 POJ 1845 Sumdiv 数学模板
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...
- HDU 5685 Problem A | 快速幂+逆元
Problem A Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total S ...
- POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...
- POJ 1845 Sumdiv(逆元)
题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点 1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...
- POJ 1845 Sumdiv 【逆元】
题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...
- POJ 1845 Sumdiv (整数拆分+等比快速求和)
当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2 ...
- POJ 1845 Sumdiv(求因数和 + 逆元)题解
题意:给你a,b,要求给出a^b的因子和取模9901的结果. 思路:求因子和的方法:任意A = p1^a1 * p2^a2 ....pn^an,则因子和为sum =(1 + p1 + p1^2 + . ...
- poj 1845 Sumdiv(约数和,乘法逆元)
题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A= ...
随机推荐
- Day3-D-Protecting the Flowers POJ3262
Farmer John went to cut some wood and left N (2 ≤ N ≤ 100,000) cows eating the grass, as usual. When ...
- MyBatis学习之简单增删改查操作、MyBatis存储过程、MyBatis分页、MyBatis一对一、MyBatis一对多
一.用到的实体类如下: Student.java package com.company.entity; import java.io.Serializable; import java.util.D ...
- 留学生想要搞定Reading List?只需这三步即可
听到有同学在抱怨“一本书都读不完,还怎么搞定reading list啊?”别急,小编这就来给你支招啦!你的文献阅读方法错了,读起来不仅效率低,而且无法做到熟练运用.因此,你需要以下这3步,就能搞定文献 ...
- 吴裕雄--天生自然JAVAIO操作学习笔记:压缩流与回退流
import java.io.File ; import java.io.FileInputStream ; import java.io.InputStream ; import java.util ...
- JuJu团队1月9号工作汇报
JuJu团队1月9号工作汇报 JuJu Scrum 团队成员 今日工作 剩余任务 困难 飞飞 将示例程序打包成exe 将crossentrophy和softmax连接起来 无 婷婷 -- 完善ma ...
- C++面试常见问题——12虚函数
虚函数 虚函数的工作原理 虚函数的实现要求对象携带额外的信息,这些信息用于确定运行时调用哪一个虚函数,这一信息具有一种被称为虚函数表指针(vptr)的指针形式.vptr指向一个被称为虚函数表(vtbl ...
- 011、MySQL取14天前Unix时间戳
#取14天前时间戳 SELECT unix_timestamp( DATE_SUB( curdate( ), INTERVAL DAY ) ); 效果如下: 不忘初心,如果您认为这篇文章有价值,认同作 ...
- java注解——内置注解和四种元注解
java内置注解: @Override(重写方法):被用于标注方法,用于说明所标注的方法是重写父类的方法 @Deprecated(过时方法):用于说明所标注元素,因存在安全问题或有更好选择而不鼓励使用 ...
- zTree第二次
需要注意的是:动态生成的树节点数据不是在后面拼接的,而是直接在done里面 <!DOCTYPE HTML> <HTML> <HEAD> <TITLE> ...
- HDU - 6205 card card card (尺取法)
题意:有n堆牌,ai表示每堆牌的牌数,bi表示每堆牌的penaltyvalue,操作开始前,可以重复进行将第一堆牌挪到最后一堆这一操作.然后,对于挪完后的牌,从第一堆开始,依次取.对于每一堆牌,首先将 ...