B - Piggy-Bank

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit Status

Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

 

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams. 
 

Output

Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.". 
 

Sample Input

3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 

Sample Output

The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
 
 
非常典型的完全背包以及恰好装满问题。
首先,要实现完全背包,循环背包容量的时候,即从0 到 最大容量,模拟一个矩阵数表也看得出,这样只要背包存得下,即从前一个f[j-v[i]]状态再加当前物品,等该层循环完毕,单种物品已经尽可能多的存在了背包当中。。。这是我对完全背包的理解。
 
然后是恰好装满问题,我一开始想的是,判断f[max]与f[max-1]是否相等,不过感觉略有些虚,好像对也好像不对。。。。然后网上大神给的标解是,将f[0]=0,其他值,如果是求背包最大,则设置为-inf(无穷小),如果是求背包最小,则设置为inf。。。这样想一下也很明晰,唯有f[0+某商品]才真正是背包容量,其他的无穷大和无穷小的状态都是虚的。。。针对本体来说,如果最终f[max]仍旧是无穷大,那说明根本凑不齐恰好装满这种状态。
 
然后还有一点心得是:本题是求背包最小值,我有点定向思维,写多了求最大值的背包,其实求最小值也是一样的写法,我目前的思路就是,将f[0]赋值为0,其他的都赋值为无穷大。然后在遍历过程中,取min值。
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int f[];
int w[],p[];
int max(int x,int y)
{
if (x>y) return y;
return x;
}
int main()
{
int t;
scanf("%d",&t);
while (t--)
{
int em,fu;
scanf("%d %d",&em,&fu);
int wei=fu-em;
int n;
scanf("%d",&n);
int i,j,k;
for (i=;i<n;i++)
{
scanf("%d %d",&p[i],&w[i]);
}
for (i=;i<=wei;i++) f[i]=1e9;
f[]=;
for (i=;i<n;i++)
{
for (j=;j<=wei;j++) //从小到大遍历背包容量,完全背包
{
if (j-w[i]>=)
{
f[j]=min(f[j],f[j-w[i]]+p[i]);
}
}
}
if (f[wei]==1e9) puts("This is impossible.");//若满足条件,说明根本不能恰好装满。
else
printf("The minimum amount of money in the piggy-bank is %d.\n",f[wei]);
}
return ;
}
 

HDU-1114 完全背包+恰好装满问题的更多相关文章

  1. 题解报告:hdu 1114 Piggy-Bank(完全背包恰好装满)

    Problem Description Before ACM can do anything, a budget must be prepared and the necessary financia ...

  2. HDU - 1114 Piggy-Bank 完全背包(背包恰好装满)

    Piggy-Bank Before ACM can do anything, a budget must be prepared and the necessary financial support ...

  3. HDU 1114 完全背包 HDU 2191 多重背包

    HDU 1114 Piggy-Bank 完全背包问题. 想想我们01背包是逆序遍历是为了保证什么? 保证每件物品只有两种状态,取或者不取.那么正序遍历呢? 这不就正好满足完全背包的条件了吗 means ...

  4. QDUOJ 分辣条-01背包恰好装满情况

    分辣条 发布时间: 2016年6月26日 20:36   最后更新: 2016年6月26日 20:37   时间限制: 1000ms   内存限制: 128M 描述 “你喝的酸奶是我买的,辣条也是我买 ...

  5. HDU 1114 完全背包+判断能否装满

    题意 给出一个存钱罐里的钱币重量 给出可能的n种钱币重量以及价值 求存钱罐中钱币的最小价值 若不可能另有输出 在裸的完全背包上加了一点东西 即判断这个背包能否被装满 初始化 dp[0]=0 其余的都使 ...

  6. hdu 1114(完全背包)

    Piggy-Bank Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  7. Piggy-Bank HDU - 1114 完全背包

    #include<iostream> #include<cstring> using namespace std; const int INF=0x3f3f3f3f; ]; s ...

  8. 题解报告:NYOJ #311完全背包(恰好装满)

    描述: 直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用.第i种物品的体积是c,价值是w.求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大.本题 ...

  9. ACM_01背包(恰好装满)

    背包2 Time Limit: 2000/1000ms (Java/Others) Problem Description: 有n个重量和价值分别为Wi,Vi的物品,现从这些物品中挑选出总量刚好为 W ...

随机推荐

  1. java中二进制反码补码的理解

    7句真言 1,二进制最高位是符号位 0正数 1负数 2,正数的原码,反码,补码都一样 3负数的原码反码 补码 (符号位不变,其他的位数取反 0->1 1->0) 4 0的反码补码都是0 5 ...

  2. Codeforces 1294D - MEX maximizing

    思维,真的很巧妙啊,看了以下博客 https://www.cnblogs.com/stelayuri/p/12230033.html

  3. CodeForces - 869B The Eternal Immortality

    题意:已知a,b,求的最后一位. 分析: 1.若b-a>=5,则尾数一定为0,因为连续5个数的尾数要么同时包括一个5和一个偶数,要么包括一个0. 2.若b-a<5,直接暴力求即可. #in ...

  4. 011、MySQL取14天前Unix时间戳

    #取14天前时间戳 SELECT unix_timestamp( DATE_SUB( curdate( ), INTERVAL DAY ) ); 效果如下: 不忘初心,如果您认为这篇文章有价值,认同作 ...

  5. Docker退出容器不关闭容器的方法

    进入docker容器后如果退出容器,容器就会变成Exited的状态,那么如何退出容器让容器不关闭呢? 如果要正常退出不关闭容器,请按Ctrl+P+Q进行退出容器,这一点很重要,请牢记! 以下示例为退出 ...

  6. 关于torchvision.models中VGG的笔记

    VGG 主要有两种结构,分别是 VGG16 和 VGG19,两者并没有本质上的区别,只是网络深度不一样. 对于给定的感受野,采用堆积的小卷积核是优于采用大的卷积核的,因为多层非线性层可以增加网络深度来 ...

  7. 初学Java(1)

    1.Java基本数据类型: 2.Java的main方法: 被static修饰,类名与文件名相同:void:方法的返回值,无返回值:main方法是程序的入口,有且只有一个: String[] args: ...

  8. C# MQTT M2MQTT

    MQTT 入门介绍 MQTT是基于二进制消息的发布/订阅编程模式的消息协议 实现MQTT协议需要客户端和服务器端通讯完成,在通讯过程中,MQTT协议中有三种身份:发布者(Publish).代理(Bro ...

  9. python 安装opendr 报错OSMesa

    ### 报错/ERROR: ```opendr/contexts/OSMesa/include/GL/glext.h:5794:21: note: expected ‘const GLchar ** ...

  10. 剑指offer系列(六)

    题目描述: 输入一个链表,按链表值从尾到头的顺序返回一个ArrayList,例如按照链表顺序,1->2->3->4->5->6->7->8,那么我们将得到{8 ...