\(\quad\) 与网络流有关的最值有三个:最大流,最小费用,最小割。这道题是最小割。想了好久,终于想明白最小割应该怎么用。

\(\quad\) 先找出矛盾的事物。在这道题中,两件事是矛盾的:做实验 \(E_i\) 和不取\(E_i\) 要求的任意一个器材 \(I_j\)。上面的 \(5\) 个点依次表示做实验 \(E_1, E_2,...,E_5\),下面的 \(5\) 个点依次表示不取器材 \(I_1,I_2,...,I_5\)。(当然,实际情况中实验个数和器材个数不一定相等)



\(\quad\) 初始情况下,每个点都存在。其中,上面的 \(5\) 个点提供了 \(\sum_{i=1}^5p_i\) 的收益,下面的 \(5\) 个点提供了 \(0\) 的收益。这样的情况是非法的,因为它允许了一些矛盾的点存在。比方说,\(E_5\) 要求的器材有 \(I_3\),那么做 \(E_5\) 和不取 \(I_3\) 这两个点就是矛盾的,不能共存。



\(\quad\) 用连线来表示这种矛盾关系:有边相连的两个点是矛盾的。为了使情况合法,必须去掉一些点。去掉点有代价,比如,去掉不取 \(I_3\) 就是取 \(I_3\),代价为 \(I_3\) 的价格 \(c_3\);去掉做 \(E_2\) 的代价就是就是 \(E_2\) 的利润 \(p_2\)。我们的目的是使任意一条连线的两边都至多存在一个点,代价最小。换言之,要求通过删去一些点使得图的上半部分与下半部分不联通。



\(\quad\) 这就可以加上源点汇点,转换为图的最小割了。其中,\(t\) 与 \(E_i\) 的边的容量是去掉它的代价,即 \(p_i\);\(s\) 与 不取 \(I_i\) 的边的容量是去掉它的代价,即 \(c_i\)。其余边容量为 \(+\infty\)。



\(\quad\) 删去一条红边就代表删去对应的点;图的最小割就是最小代价。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue> std::string str;
int it;
#define getchar() str[it++] int read(void){
if(it == str.length())
return EOF;
int res = 0; char ch = getchar();
while(ch < '0' || ch > '9'){
if(it == str.length())
return EOF;
ch = getchar();
}
while(ch >= '0' && ch <= '9'){
res = res * 10 + ch - 48;
if(it == str.length())
return res;
ch = getchar();
}
return res;
} const int MAXN = 3e2 + 19, MAXM = MAXN * MAXN + MAXN + MAXN, INF = 0x3f3f3f3f; struct Edge{
int to, next, c;
}edge[MAXM]; int cnt = -1, head[MAXN]; inline void add(int from, int to, int c){
edge[++cnt].to = to;
edge[cnt].c = c;
edge[cnt].next = head[from];
head[from] = cnt;
} int m, n;
int ans, c, p; int dep[MAXN]; int bfs(void){
std::queue<int>q; q.push(0);
std::memset(dep, 0, sizeof dep); dep[0] = 1;
while(!q.empty()){
int node = q.front(); q.pop();
for(int i = head[node]; i != -1; i = edge[i].next)
if(!dep[edge[i].to] && edge[i].c)
dep[edge[i].to] = dep[node] + 1, q.push(edge[i].to);
}
return dep[n + m + 1];
} inline int min(const int& a, const int& b){
return a < b ? a : b;
} int dfs(int node, int flow){
if(node == n + m + 1 || !flow)
return flow;
int stream = 0, f;
for(int i = head[node]; i != -1; i = edge[i].next)
if(dep[edge[i].to] == dep[node] + 1 && (f = dfs(edge[i].to, min(flow, edge[i].c)))){
flow -= f, stream += f;
edge[i].c -= f, edge[i ^ 1].c += f;
if(!flow)
break;
}
return stream;
} int dinic(void){
int flow = 0;
while(bfs())
flow += dfs(0, 0x3f3f3f3f);
return flow;
} int main(){
std::memset(head, -1, sizeof head);
std::cin >> m >> n; std::getline(std::cin, str);
for(int i = 1; i <= m; ++i){
std::getline(std::cin, str); it = 0;
ans += (p = read());
add(0, i, p), add(i, 0, 0);
int u;
while((u = read()) != EOF)
add(i, m + u, INF), add(m + u, i, 0);
}
for(int i = 1; i <= n; ++i){
std::cin >> c;
add(m + i, m + n + 1, c), add(m + n + 1, m + i, 0);
}
ans -= dinic();
for(int i = 1; i <= m; ++i)
if(dep[i])
std::printf("%d ", i);
std::putchar('\n');
for(int i = 1; i <= n; ++i)
if(dep[m + i])
std::printf("%d ", i);
std::putchar('\n');
printf("%d\n", ans);
return 0;
}

行末空格真的烦...

LibreOJ #6001. 「网络流 24 题」太空飞行计划的更多相关文章

  1. LibreOJ #6001. 「网络流 24 题」太空飞行计划 最大权闭合图

    #6001. 「网络流 24 题」太空飞行计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测 ...

  2. Luogu 2762 太空飞行计划 / Libre 6001 「网络流 24 题」太空飞行计划 (网络流,最大流)

    Luogu 2762 太空飞行计划 / Libre 6001 「网络流 24 题」太空飞行计划 (网络流,最大流) Description W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行 ...

  3. 【刷题】LOJ 6001 「网络流 24 题」太空飞行计划

    题目描述 W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合 \(E = \{ E_1, E_2, \cdots, E_m ...

  4. LOJ6001 - 「网络流 24 题」太空飞行计划

    原题链接 Description 有个实验和个仪器,做实验有报酬买仪器有花费.每个实验都需要一些仪器,求最大净收益(实验报酬仪器花费),并输出一组方案. Solution 实验向所需仪器连边,实验的点 ...

  5. LibreOJ #6000. 「网络流 24 题」搭配飞行员

    二次联通门 : LibreOJ #6000. 「网络流 24 题」搭配飞行员 /* LibreOJ #6000. 「网络流 24 题」搭配飞行员 二分图最大匹配 Dinic最大流 + 当前弧优化 */ ...

  6. LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   ...

  7. LibreOJ #6013. 「网络流 24 题」负载平衡 最小费用最大流 供应平衡问题

    #6013. 「网络流 24 题」负载平衡 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  8. LIbreOJ #6011. 「网络流 24 题」运输问题 最小费用最大流

    #6011. 「网络流 24 题」运输问题 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  9. LibreOJ #6008. 「网络流 24 题」餐巾计划 最小费用最大流 建图

    #6008. 「网络流 24 题」餐巾计划 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

随机推荐

  1. finally语句块一定会被执行吗

    finally语句块一定会被执行吗? 答案: 不一定 1. 发生异常的代码必须在try 代码块中,才有可能被执行 public class MyTest { public static void ma ...

  2. 【C语言】判断某一正整数是否为完数

    什么是完数? 如果一个数等于它的因子之和,则称该数为“完数”(或“完全数”). 例如,6的因子为1.2.3,而 6=1+2+3,因此6是“完数”. 程序框图:m  问题分析 根据完数的定义,解决本题的 ...

  3. 文件服务器之fastDFS

    FastDFS是一个开源的轻量级分布式文件系统,功能包括:文件存储.文件同步.文件访问(文件上传.文件下载)等,解决了大容量存储和负载均衡的问题.特别适合中小文件(建议范围:4KB < file ...

  4. java redis 实现用户签到功能(很普通简单的签到功能)

    业务需求是用户每天只能签到一次,而且签到后用户增加积分,所以把用户每次签到时放到redis 缓存里面,然后每天凌晨时再清除缓存,大概简单思想是这样的 直接看代码吧如下 @Transactional @ ...

  5. Linux 一些有用的能力

    编程能力 Linux产生于一群真正的黑客.尽管人们习惯于认为Linus是Linux的缔造者,在linux包含的数以千计的文件中,也有一个名为Credits的文件记录了主要的Linux Hacker们的 ...

  6. kafka单机搭建

    1.安装jdk1.8和zookeeper 2.下载kafka上传服务器 下载地址:http://archive.apache.org/dist/kafka/0.10.0.0/kafka_2.11-0. ...

  7. 吴裕雄--天生自然Python Matplotlib库学习笔记:matplotlib绘图(2)

    import numpy as np import matplotlib.pyplot as plt fig = plt.figure() fig.subplots_adjust(bottom=0.0 ...

  8. 洛谷P1006传纸条

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个 m 行 n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了. ...

  9. SpringMvc 项目配置

    spring-mvc.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=&quo ...

  10. iOS 根据域名查询 IP 地址

    在 iOS 开发中,如果需要知道网站的 IP 地址: #include <netdb.h> #include <arpa/inet.h> NSString *webSiteSt ...