Keras入门——(6)长短期记忆网络LSTM(三)
参考:
https://blog.csdn.net/u012735708/article/details/82769711
https://zybuluo.com/hanbingtao/note/581764
http://blog.sina.com.cn/s/blog_afc8730e0102xup1.html
https://blog.csdn.net/qq_30638831/article/details/80060045
执行代码:
- import pandas as pd
- from datetime import datetime
- from matplotlib import pyplot
- from sklearn.preprocessing import LabelEncoder,MinMaxScaler
- from sklearn.metrics import mean_squared_error
- from keras.models import Sequential
- from keras.layers import Dense
- from keras.layers import LSTM
- from numpy import concatenate
- from math import sqrt
- # load data
- def parse(x):
- return datetime.strptime(x, '%Y %m %d %H')
- def read_raw():
- dataset = pd.read_csv('C:/Users/cf_pc/Documents/jupyter/data/PRSA_data_2010.1.1-2014.12.31.csv', parse_dates = [['year', 'month', 'day', 'hour']], index_col=0, date_parser=parse)
- dataset.drop('No', axis=1, inplace=True)
- # manually specify column names
- dataset.columns = ['pollution', 'dew', 'temp', 'press', 'wnd_dir', 'wnd_spd', 'snow', 'rain']
- dataset.index.name = 'date'
- # mark all NA values with 0
- dataset['pollution'].fillna(0, inplace=True)
- # drop the first 24 hours
- dataset = dataset[24:]
- # summarize first 5 rows
- print(dataset.head(5))
- # save to file
- dataset.to_csv('C:/Users/cf_pc/Documents/jupyter/data/pollution.csv')
- def drow_pollution():
- dataset = pd.read_csv('C:/Users/cf_pc/Documents/jupyter/data/pollution.csv', header=0, index_col=0)
- values = dataset.values
- # specify columns to plot
- groups = [0, 1, 2, 3, 5, 6, 7]
- i = 1
- # plot each column
- pyplot.figure(figsize=(10,10))
- for group in groups:
- pyplot.subplot(len(groups), 1, i)
- pyplot.plot(values[:, group])
- pyplot.title(dataset.columns[group], y=0.5, loc='right')
- i += 1
- pyplot.show()
- def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):
- # convert series to supervised learning
- n_vars = 1 if type(data) is list else data.shape[1]
- df = pd.DataFrame(data)
- cols, names = list(), list()
- # input sequence (t-n, ... t-1)
- for i in range(n_in, 0, -1):
- cols.append(df.shift(i))
- names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]
- # forecast sequence (t, t+1, ... t+n)
- for i in range(0, n_out):
- cols.append(df.shift(-i))
- if i == 0:
- names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
- else:
- names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
- # put it all together
- agg = pd.concat(cols, axis=1)
- agg.columns = names
- # drop rows with NaN values
- if dropnan:
- agg.dropna(inplace=True)
- return agg
- def cs_to_sl():
- # load dataset
- dataset = pd.read_csv('C:/Users/cf_pc/Documents/jupyter/data/pollution.csv', header=0, index_col=0)
- values = dataset.values
- # integer encode direction
- encoder = LabelEncoder()
- values[:,4] = encoder.fit_transform(values[:,4])
- # ensure all data is float
- values = values.astype('float32')
- # normalize features
- scaler = MinMaxScaler(feature_range=(0, 1))
- scaled = scaler.fit_transform(values)
- # frame as supervised learning
- reframed = series_to_supervised(scaled, 1, 1)
- # drop columns we don't want to predict
- reframed.drop(reframed.columns[[9,10,11,12,13,14,15]], axis=1, inplace=True)
- print(reframed.head())
- return reframed,scaler
- def train_test(reframed):
- # split into train and test sets
- values = reframed.values
- n_train_hours = 365 * 24
- train = values[:n_train_hours, :]
- test = values[n_train_hours:, :]
- # split into input and outputs
- train_X, train_y = train[:, :-1], train[:, -1]
- test_X, test_y = test[:, :-1], test[:, -1]
- # reshape input to be 3D [samples, timesteps, features]
- train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))
- test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))
- print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)
- return train_X,train_y,test_X,test_y
- def fit_network(train_X,train_y,test_X,test_y,scaler):
- model = Sequential()
- model.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2])))
- model.add(Dense(1))
- model.compile(loss='mae', optimizer='adam')
- # fit network
- history = model.fit(train_X, train_y, epochs=50, batch_size=72, validation_data=(test_X, test_y), verbose=2, shuffle=False)
- # plot history
- pyplot.plot(history.history['loss'], label='train')
- pyplot.plot(history.history['val_loss'], label='test')
- pyplot.legend()
- pyplot.show()
- # make a prediction
- yhat = model.predict(test_X)
- test_X = test_X.reshape((test_X.shape[0], test_X.shape[2]))
- # invert scaling for forecast
- inv_yhat = concatenate((yhat, test_X[:, 1:]), axis=1)
- inv_yhat = scaler.inverse_transform(inv_yhat)
- inv_yhat = inv_yhat[:,0]
- # invert scaling for actual
- inv_y = scaler.inverse_transform(test_X)
- inv_y = inv_y[:,0]
- # calculate RMSE
- rmse = sqrt(mean_squared_error(inv_y, inv_yhat))
- print('Test RMSE: %.3f' % rmse)
- if __name__ == '__main__':
- drow_pollution()
- reframed,scaler = cs_to_sl()
- train_X,train_y,test_X,test_y = train_test(reframed)
- fit_network(train_X,train_y,test_X,test_y,scaler)
返回信息:
- var1(t-1) var2(t-1) var3(t-1) var4(t-1) var5(t-1) var6(t-1) \
- 1 0.129779 0.352941 0.245902 0.527273 0.666667 0.002290
- 2 0.148893 0.367647 0.245902 0.527273 0.666667 0.003811
- 3 0.159960 0.426471 0.229508 0.545454 0.666667 0.005332
- 4 0.182093 0.485294 0.229508 0.563637 0.666667 0.008391
- 5 0.138833 0.485294 0.229508 0.563637 0.666667 0.009912
- var7(t-1) var8(t-1) var1(t)
- 1 0.000000 0.0 0.148893
- 2 0.000000 0.0 0.159960
- 3 0.000000 0.0 0.182093
- 4 0.037037 0.0 0.138833
- 5 0.074074 0.0 0.109658
- (8760, 1, 8) (8760,) (35039, 1, 8) (35039,)
- WARNING:tensorflow:From C:\3rd\Anaconda2\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
- Instructions for updating:
- Colocations handled automatically by placer.
- WARNING:tensorflow:From C:\3rd\Anaconda2\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
- Instructions for updating:
- Use tf.cast instead.
- Train on 8760 samples, validate on 35039 samples
- Epoch 1/50
- - 2s - loss: 0.0578 - val_loss: 0.0562
- Epoch 2/50
- - 1s - loss: 0.0413 - val_loss: 0.0563
- Epoch 3/50
- - 1s - loss: 0.0254 - val_loss: 0.0454
- Epoch 4/50
- - 1s - loss: 0.0179 - val_loss: 0.0388
- Epoch 5/50
- - 1s - loss: 0.0158 - val_loss: 0.0237
- Epoch 6/50
- - 1s - loss: 0.0149 - val_loss: 0.0175
- Epoch 7/50
- - 1s - loss: 0.0148 - val_loss: 0.0163
- Epoch 8/50
- - 1s - loss: 0.0147 - val_loss: 0.0160
- Epoch 9/50
- - 1s - loss: 0.0148 - val_loss: 0.0155
- Epoch 10/50
- - 1s - loss: 0.0147 - val_loss: 0.0151
- Epoch 11/50
- - 1s - loss: 0.0146 - val_loss: 0.0148
- Epoch 12/50
- - 1s - loss: 0.0147 - val_loss: 0.0145
- Epoch 13/50
- - 1s - loss: 0.0146 - val_loss: 0.0143
- Epoch 14/50
- - 1s - loss: 0.0146 - val_loss: 0.0143
- Epoch 15/50
- - 1s - loss: 0.0145 - val_loss: 0.0141
- Epoch 16/50
- - 1s - loss: 0.0145 - val_loss: 0.0144
- Epoch 17/50
- - 1s - loss: 0.0147 - val_loss: 0.0140
- Epoch 18/50
- - 1s - loss: 0.0145 - val_loss: 0.0140
- Epoch 19/50
- - 1s - loss: 0.0145 - val_loss: 0.0138
- Epoch 20/50
- - 1s - loss: 0.0145 - val_loss: 0.0138
- Epoch 21/50
- - 1s - loss: 0.0144 - val_loss: 0.0138
- Epoch 22/50
- - 1s - loss: 0.0145 - val_loss: 0.0138
- Epoch 23/50
- - 1s - loss: 0.0146 - val_loss: 0.0137
- Epoch 24/50
- - 1s - loss: 0.0144 - val_loss: 0.0137
- Epoch 25/50
- - 1s - loss: 0.0144 - val_loss: 0.0137
- Epoch 26/50
- - 1s - loss: 0.0144 - val_loss: 0.0136
- Epoch 27/50
- - 1s - loss: 0.0144 - val_loss: 0.0136
- Epoch 28/50
- - 1s - loss: 0.0144 - val_loss: 0.0136
- Epoch 29/50
- - 1s - loss: 0.0145 - val_loss: 0.0137
- Epoch 30/50
- - 1s - loss: 0.0145 - val_loss: 0.0136
- Epoch 31/50
- - 1s - loss: 0.0144 - val_loss: 0.0137
- Epoch 32/50
- - 1s - loss: 0.0144 - val_loss: 0.0136
- Epoch 33/50
- - 1s - loss: 0.0144 - val_loss: 0.0136
- Epoch 34/50
- - 1s - loss: 0.0145 - val_loss: 0.0136
- Epoch 35/50
- - 1s - loss: 0.0144 - val_loss: 0.0135
- Epoch 36/50
- - 1s - loss: 0.0144 - val_loss: 0.0135
- Epoch 37/50
- - 1s - loss: 0.0144 - val_loss: 0.0135
- Epoch 38/50
- - 1s - loss: 0.0144 - val_loss: 0.0135
- Epoch 39/50
- - 1s - loss: 0.0144 - val_loss: 0.0135
- Epoch 40/50
- - 1s - loss: 0.0144 - val_loss: 0.0135
- Epoch 41/50
- - 1s - loss: 0.0143 - val_loss: 0.0135
- Epoch 42/50
- - 1s - loss: 0.0144 - val_loss: 0.0135
- Epoch 43/50
- - 1s - loss: 0.0144 - val_loss: 0.0135
- Epoch 44/50
- - 1s - loss: 0.0144 - val_loss: 0.0135
- Epoch 45/50
- - 1s - loss: 0.0144 - val_loss: 0.0137
- Epoch 46/50
- - 1s - loss: 0.0144 - val_loss: 0.0136
- Epoch 47/50
- - 1s - loss: 0.0143 - val_loss: 0.0135
- Epoch 48/50
- - 1s - loss: 0.0144 - val_loss: 0.0136
- Epoch 49/50
- - 1s - loss: 0.0143 - val_loss: 0.0135
- Epoch 50/50
- - 1s - loss: 0.0144 - val_loss: 0.0134
- Test RMSE: 4.401
参考:
https://www.cnblogs.com/tianrunzhi/p/7825671.html
https://www.cnblogs.com/king-lps/p/7846414.html
https://www.cnblogs.com/datablog/p/6127000.html
https://www.cnblogs.com/charlotte77/p/5622325.html
https://www.cnblogs.com/bawu/p/7701810.html
Keras入门——(6)长短期记忆网络LSTM(三)的更多相关文章
- 如何预测股票分析--长短期记忆网络(LSTM)
在上一篇中,我们回顾了先知的方法,但是在这个案例中表现也不是特别突出,今天介绍的是著名的l s t m算法,在时间序列中解决了传统r n n算法梯度消失问题的的它这一次还会有令人杰出的表现吗? 长短期 ...
- Keras入门——(7)长短期记忆网络LSTM(四)
数据准备:http://www.manythings.org/anki/cmn-eng.zip 源代码:https://github.com/pjgao/seq2seq_keras 参考:https: ...
- Keras入门——(5)长短期记忆网络LSTM(二)
参考: https://blog.csdn.net/zwqjoy/article/details/80493341 https://blog.csdn.net/u012735708/article/d ...
- Keras入门——(4)长短期记忆网络LSTM(一)
参考: https://blog.csdn.net/zwqjoy/article/details/80493341 https://blog.csdn.net/u012735708/article/d ...
- LSTM - 长短期记忆网络
循环神经网络(RNN) 人们不是每一秒都从头开始思考,就像你阅读本文时,不会从头去重新学习一个文字,人类的思维是有持续性的.传统的卷积神经网络没有记忆,不能解决这一个问题,循环神经网络(Recurre ...
- 递归神经网络之理解长短期记忆网络(LSTM NetWorks)(转载)
递归神经网络 人类并不是每时每刻都从头开始思考.正如你阅读这篇文章的时候,你是在理解前面词语的基础上来理解每个词.你不会丢弃所有已知的信息而从头开始思考.你的思想具有持续性. 传统的神经网络不能做到这 ...
- 理解长短期记忆网络(LSTM NetWorks)
转自:http://www.csdn.net/article/2015-11-25/2826323 原文链接:Understanding LSTM Networks(译者/刘翔宇 审校/赵屹华 责编/ ...
- LSTMs 长短期记忆网络系列
RNN的长期依赖问题 什么是长期依赖? 长期依赖是指当前系统的状态,可能受很长时间之前系统状态的影响,是RNN中无法解决的一个问题. 如果从(1) “ 这块冰糖味道真?”来预测下一个词,是很容易得出“ ...
- LSTM(Long Short-Term Memory)长短期记忆网络
1. 摘要 对于RNN解决了之前信息保存的问题,例如,对于阅读一篇文章,RNN网络可以借助前面提到的信息对当前的词进行判断和理解,这是传统的网络是不能做到的.但是,对于RNN网络存在长期依赖问题,比如 ...
随机推荐
- go语言快速入门教程
go快速入门指南 by 小强,2019-06-13 go语言是目前非常火热的语言,广泛应用于服务器端,云计算,kubernetes容器编排等领域.它是一种开源的编译型程序设计语言,支持并发.垃圾回收机 ...
- Linux - 查看所有服务状态
ubuntu: service --status-all 例如可查看ssh, apache2等服务是否开启
- .NET中的字符串(2):你真的了解.NET中的String吗?
概述 String在任何语言中,都有它的特殊性,在.NET中也是如此.它属于基本数据类型,也是基本数据类型中唯一的引用类型.字符串可以声明为常量,但是它却放在了堆中.希望通过本文能够使大家对.NET中 ...
- Linux学习:进入与退出系统
进入Linux系统:必须要输入用户的账号,在系统安装过程中可以创建以下两种帐号: 1.root--超级用户帐号(系统管理员),使用这个帐号可以在系统中做任何事情. 2.普通用户--这个帐号供普通用户使 ...
- pytest-conftest.py作用范围
1.conftest.py解释 conftest.py是pytest框架里面一个很重要的东西,它可以在这个文件里面编写fixture,而这个fixture的作用就相当于我们unittest框架里面的s ...
- string和stringBuffer,stringBuilder的区别
1,String类的内容一旦声明后是不可改变的,改变的只是其内存的指向,而StringBuffer类的对象内容是可以改变的. 2,对于StringBuffer,不能像String那样直接通过赋值的方式 ...
- 思科交换机配置单播MAC地址过滤
1.其他厂商: 在华为,华三等设备上,我们都有“黑洞MAC地址表项” 的配置,其特点是手动配置.不会老化,且重启后也不会丢失.例如如下示例: 黑洞表项是特殊的静态MAC地址表项,丢弃含有特定源MAC地 ...
- ConcurrentHashMap 实现缓存类
参考:https://blog.csdn.net/woshilijiuyi/article/details/81335497 在规定时间内,使用 hashMap 实现一个缓存工具类,需要考虑一下几点 ...
- 阅读build to win的个人感想
一个程序员要向各个方面学习,向市场.向用户学习等,不能局限于一方面.除此以外还要有自己的想法,要懂得创新,也需要在各个方面都有所突破,有所超越,实力才是取得胜利的根关键.
- 「CTSC2008」网络管理
「CTSC2008」网络管理 传送门 整体二分做法,应该和这题一样的吧. 就是把序列换成树,第 \(k\) 小换成第 \(k\) 大. 然后就切了... 参考代码: #include <algo ...