python学习要点(二)
我的博客:https://www.luozhiyun.com/archives/269
'==' VS 'is'
'=='操作符比较对象之间的值是否相等。
'is'操作符比较的是对象的身份标识是否相等,即它们是否是同一个对象,是否指向同一个内存地址。
如:
a = 10
b = 10
a == b
True
id(a)
4427562448
id(b)
4427562448
a is b
True
Python 会为 10 这个值开辟一块内存,然后变量 a 和 b 同时指向这块内存区域,即 a 和 b 都是指向 10 这个变量,因此 a 和 b 的值相等,id 也相等。
不过,对于整型数字来说,以上a is b为 True 的结论,只适用于 -5 到 256 范围内的数字。这里和java的Integer的缓存有点像,java缓存-127到128。
当我们比较一个变量与一个单例(singleton)时,通常会使用'is'。一个典型的例子,就是检查一个变量是否为 None:
if a is None:
...
if a is not None:
...
比较操作符'is'的速度效率,通常要优于'=='。因为'is'操作符不能被重载,而执行a == b相当于是去执行a.eq(b),而 Python 大部分的数据类型都会去重载__eq__这个函数。
浅拷贝和深度拷贝
浅拷贝
浅拷贝,是指重新分配一块内存,创建一个新的对象,里面的元素是原对象中子对象的引用。因此,如果原对象中的元素不可变,那倒无所谓;但如果元素可变,浅拷贝通常会带来一些副作用,如下:
l1 = [[1, 2], (30, 40)]
l2 = list(l1)
l1.append(100)
l1[0].append(3)
l1
[[1, 2, 3], (30, 40), 100]
l2
[[1, 2, 3], (30, 40)]
l1[1] += (50, 60)
l1
[[1, 2, 3], (30, 40, 50, 60), 100]
l2
[[1, 2, 3], (30, 40)]
在这个例子中,因为浅拷贝里的元素是对原对象元素的引用,因此 l2 中的元素和 l1 指向同一个列表和元组对象。
l1[0].append(3),这里表示对 l1 中的第一个列表新增元素 3。因为 l2 是 l1 的浅拷贝,l2 中的第一个元素和 l1 中的第一个元素,共同指向同一个列表,因此 l2 中的第一个列表也会相对应的新增元素 3。
l1[1] += (50, 60),因为元组是不可变的,这里表示对 l1 中的第二个元组拼接,然后重新创建了一个新元组作为 l1 中的第二个元素,而 l2 中没有引用新元组,因此 l2 并不受影响。
深度拷贝
所谓深度拷贝,是指重新分配一块内存,创建一个新的对象,并且将原对象中的元素,以递归的方式,通过创建新的子对象拷贝到新对象中。因此,新对象和原对象没有任何关联。
Python 中以 copy.deepcopy() 来实现对象的深度拷贝。
import copy
l1 = [[1, 2], (30, 40)]
l2 = copy.deepcopy(l1)
l1.append(100)
l1[0].append(3)
l1
[[1, 2, 3], (30, 40), 100]
l2
[[1, 2], (30, 40)]
不过,深度拷贝也不是完美的,往往也会带来一系列问题。如果被拷贝对象中存在指向自身的引用,那么程序很容易陷入无限循环:
import copy
x = [1]
x.append(x)
x
[1, [...]]
y = copy.deepcopy(x)
y
[1, [...]]
这里没有出现 stack overflow 的现象,是因为深度拷贝函数 deepcopy 中会维护一个字典,记录已经拷贝的对象与其 ID。拷贝过程中,如果字典里已经存储了将要拷贝的对象,则会从字典直接返回。
def deepcopy(x, memo=None, _nil=[]):
"""Deep copy operation on arbitrary Python objects.
See the module's __doc__ string for more info.
"""
if memo is None:
memo = {}
d = id(x) # 查询被拷贝对象 x 的 id
y = memo.get(d, _nil) # 查询字典里是否已经存储了该对象
if y is not _nil:
return y # 如果字典里已经存储了将要拷贝的对象,则直接返回
...
Python参数传递
Python 中参数的传递是赋值传递,或者是叫对象的引用传递。这里的赋值或对象的引用传递,不是指向一个具体的内存地址,而是指向一个具体的对象。
- 如果对象是可变的,当其改变时,所有指向这个对象的变量都会改变。
- 如果对象不可变,简单的赋值只能改变其中一个变量的值,其余变量则不受影响。
例如:
def my_func1(b):
b = 2
a = 1
my_func1(a)
a
1
这里的参数传递,使变量 a 和 b 同时指向了 1 这个对象。但当我们执行到 b = 2 时,系统会重新创建一个值为 2 的新对象,并让 b 指向它;而 a 仍然指向 1 这个对象。所以,a 的值不变,仍然为 1。
def my_func3(l2):
l2.append(4)
l1 = [1, 2, 3]
my_func3(l1)
l1
[1, 2, 3, 4]
这里 l1 和 l2 先是同时指向值为 [1, 2, 3] 的列表。不过,由于列表可变,执行 append() 函数,对其末尾加入新元素 4 时,变量 l1 和 l2 的值也都随之改变了。
def my_func4(l2):
l2 = l2 + [4]
l1 = [1, 2, 3]
my_func4(l1)
l1
[1, 2, 3]
这里 l2 = l2 + [4],表示创建了一个“末尾加入元素 4“的新列表,并让 l2 指向这个新的对象。这个过程与 l1 无关,因此 l1 的值不变。
装饰器
首先我们看一个装饰器的简单例子:
def my_decorator(func):
def wrapper():
print('wrapper of decorator')
func()
return wrapper
def greet():
print('hello world')
greet = my_decorator(greet)
greet()
# 输出
wrapper of decorator
hello world
这段代码中,变量 greet 指向了内部函数 wrapper(),而内部函数 wrapper() 中又会调用原函数 greet(),因此,最后调用 greet() 时,就会先打印'wrapper of decorator',然后输出'hello world'。
my_decorator() 就是一个装饰器,它把真正需要执行的函数 greet() 包裹在其中,并且改变了它的行为。
在python中,可以使用更优雅的方式:
def my_decorator(func):
def wrapper():
print('wrapper of decorator')
func()
return wrapper
@my_decorator
def greet():
print('hello world')
greet()
@my_decorator就相当于前面的greet=my_decorator(greet)语句
通常情况下,我们会把args和**kwargs,作为装饰器内部函数 wrapper() 的参数。args和**kwargs,表示接受任意数量和类型的参数,因此装饰器就可以写成下面的形式:
def my_decorator(func):
def wrapper(*args, **kwargs):
print('wrapper of decorator')
func(*args, **kwargs)
return wrapper
这样可以让装饰器接受任意的参数。
自定义参数的装饰器
比如我想要定义一个参数,来表示装饰器内部函数被执行的次数
def repeat(num):
def my_decorator(func):
def wrapper(*args, **kwargs):
for i in range(num):
print('wrapper of decorator')
func(*args, **kwargs)
return wrapper
return my_decorator
@repeat(4)
def greet(message):
print(message)
greet('hello world')
# 输出:
wrapper of decorator
hello world
wrapper of decorator
hello world
wrapper of decorator
hello world
wrapper of decorator
hello world
保留原函数的元信息
如下:
greet.__name__
## 输出
'wrapper'
help(greet)
# 输出
Help on function wrapper in module __main__:
wrapper(*args, **kwargs)
greet() 函数被装饰以后,它的元信息变了。元信息告诉我们“它不再是以前的那个 greet() 函数,而是被 wrapper() 函数取代了”。
因此,可以加上内置的装饰器@functools.wrap,它会帮助保留原函数的元信息。
如下:
import functools
def my_decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
print('wrapper of decorator')
func(*args, **kwargs)
return wrapper
@my_decorator
def greet(message):
print(message)
greet.__name__
# 输出
'greet'
类装饰器
类装饰器主要依赖于函数__call_(),每当你调用一个类的示例时,函数__call__()就会被执行一次。
class Count:
def __init__(self, func):
self.func = func
self.num_calls = 0
def __call__(self, *args, **kwargs):
self.num_calls += 1
print('num of calls is: {}'.format(self.num_calls))
return self.func(*args, **kwargs)
@Count
def example():
print("hello world")
example()
# 输出
num of calls is: 1
hello world
example()
# 输出
num of calls is: 2
hello world
装饰器的嵌套
如:
@decorator1
@decorator2
@decorator3
def func():
...
等效于:
decorator1(decorator2(decorator3(func)))
例子:
import functools
def my_decorator1(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
print('execute decorator1')
func(*args, **kwargs)
return wrapper
def my_decorator2(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
print('execute decorator2')
func(*args, **kwargs)
return wrapper
@my_decorator1
@my_decorator2
def greet(message):
print(message)
greet('hello world')
# 输出
execute decorator1
execute decorator2
hello world
协程
协程和多线程的区别,主要在于两点,一是协程为单线程;二是协程由用户决定,在哪些地方交出控制权,切换到下一个任务。
我们先来看一个例子:
import asyncio
async def crawl_page(url):
print('crawling {}'.format(url))
sleep_time = int(url.split('_')[-1])
await asyncio.sleep(sleep_time)
print('OK {}'.format(url))
async def main(urls):
tasks = [asyncio.create_task(crawl_page(url)) for url in urls]
for task in tasks:
await task
%time asyncio.run(main(['url_1', 'url_2', 'url_3', 'url_4']))
########## 输出 ##########
crawling url_1
crawling url_2
crawling url_3
crawling url_4
OK url_1
OK url_2
OK url_3
OK url_4
Wall time: 3.99 s
执行协程有多种方法,这里我介绍一下常用的三种:
首先,我们可以通过 await 来调用。await 执行的效果,和 Python 正常执行是一样的,也就是说程序会阻塞在这里,进入被调用的协程函数,执行完毕返回后再继续,而这也是 await 的字面意思。
其次,我们可以通过 asyncio.create_task() 来创建任务。要等所有任务都结束才行,用for task in tasks: await task 即可。
最后,我们需要 asyncio.run 来触发运行。asyncio.run 这个函数是 Python 3.7 之后才有的特性。一个非常好的编程规范是,asyncio.run(main()) 作为主程序的入口函数,在程序运行周期内,只调用一次 asyncio.run。
在上面的例子中,也可以使用await asyncio.gather(*tasks),表示等待所有任务。
import asyncio
async def crawl_page(url):
print('crawling {}'.format(url))
sleep_time = int(url.split('_')[-1])
await asyncio.sleep(sleep_time)
print('OK {}'.format(url))
async def main(urls):
tasks = [asyncio.create_task(crawl_page(url)) for url in urls]
await asyncio.gather(*tasks)
%time asyncio.run(main(['url_1', 'url_2', 'url_3', 'url_4']))
########## 输出 ##########
crawling url_1
crawling url_2
crawling url_3
crawling url_4
OK url_1
OK url_2
OK url_3
OK url_4
Wall time: 4.01 s
协程中断和异常处理
import asyncio
async def worker_1():
await asyncio.sleep(1)
return 1
async def worker_2():
await asyncio.sleep(2)
return 2 / 0
async def worker_3():
await asyncio.sleep(3)
return 3
async def main():
task_1 = asyncio.create_task(worker_1())
task_2 = asyncio.create_task(worker_2())
task_3 = asyncio.create_task(worker_3())
await asyncio.sleep(2)
task_3.cancel()
res = await asyncio.gather(task_1, task_2, task_3, return_exceptions=True)
print(res)
%time asyncio.run(main())
########## 输出 ##########
[1, ZeroDivisionError('division by zero'), CancelledError()]
Wall time: 2 s
这个例子中,使用了task_3.cancel()来中断代码,使用了return_exceptions=True来控制输出异常,如果不设置的话,错误就会完整地 throw 到我们这个执行层,从而需要 try except 来捕捉,这也就意味着其他还没被执行的任务会被全部取消掉。
Python 中的垃圾回收机制
python采用的是引用计数机制为主,标记-清除和分代收集(隔代回收)两种机制为辅的策略。
引用计数法
引用计数法机制的原理是:每个对象维护一个ob_ref字段,用来记录该对象当前被引用的次数,每当新的引用指向该对象时,它的引用计数ob_ref加1,每当该对象的引用失效时计数ob_ref减1,一旦对象的引用计数为0,该对象立即被回收,对象占用的内存空间将被释放。
它的缺点是它不能解决对象的“循环引用”。
标记清除算法
对于一个有向图,如果从一个节点出发进行遍历,并标记其经过的所有节点;那么,在遍历结束后,所有没有被标记的节点,我们就称之为不可达节点。显而易见,这些节点的存在是没有任何意义的,自然的,我们就需要对它们进行垃圾回收。
在 Python 的垃圾回收实现中,mark-sweep 使用双向链表维护了一个数据结构,并且只考虑容器类的对象(只有容器类对象才有可能产生循环引用)。
分代收集算法
Python 将所有对象分为三代。刚刚创立的对象是第 0 代;经过一次垃圾回收后,依然存在的对象,便会依次从上一代挪到下一代。而每一代启动自动垃圾回收的阈值,则是可以单独指定的。当垃圾回收器中新增对象减去删除对象达到相应的阈值时,就会对这一代对象启动垃圾回收。
python学习要点(二)的更多相关文章
- Python学习(二)Python 简介
Python 简介 官方指南及文档 Python2.7官方指南(中文版):http://pan.baidu.com/s/1dDm18xr Python3.4官方指南(中文版):http://pan.b ...
- 编程语言与Python学习(二)
1.1 流程控制之for循环 1 迭代式循环:for,语法如下 for i in range(10): 缩进的代码块 2 break与continue(同上) 3 循环嵌套 for i in rang ...
- python学习笔记(二)、字符串操作
该一系列python学习笔记都是根据<Python基础教程(第3版)>内容所记录整理的 1.字符串基本操作 所有标准序列操作(索引.切片.乘法.成员资格检查.长度.最小值和最大值)都适用于 ...
- (10.1)Python学习笔记二
1.在项目工程中要模块化测试一个开发的功能,在测试通过后交付给项目组其他人员继续开发.要保证代码开发的性能和效率以及可扩展性. 2.项目工程中的文件夹分类要功能模块明确清晰,在python中引入某一个 ...
- Python学习之二:Python 与 C 区别
引自http://www.lxway.com/181844.htm 从开始看Python到现在也有半个多月了,前后看了Python核心编程和Dive into Python两本书.话说半个月看两本,是 ...
- python学习(二)
这几天脑子里一直在想一个应用,想以此来练习python.用一句话来概括这个应用的功能,大致表述是这样:自动采集全省各类公共文化机构网站上新发布的信息,并分类呈现.各类公共文化机构,是指公共图书馆.文化 ...
- Python学习(二十六)—— Django基础一
转载自:http://www.cnblogs.com/liwenzhou/p/8258992.html 一.Web框架本质 我们可以这样理解:所有的Web应用本质上就是一个socket服务端,而用户的 ...
- Python学习(二)——深度学习入门介绍
课程二:深度学习入门 讲师:David (数据分析工程师) 这门课主要介绍了很多神经网络的基本原理,非常非常基础的了解. 零.思维导图预览: 一.深度神经网络 1.神经元 ...
- python学习(二)之turtle库绘图
今天是三月七号,也就是女生节,或者女神节.不知道你是不是有自己喜欢的女孩子,在这里你可以用turtle库绘制一朵玫瑰花,送给你喜欢的姑娘.(拉到最后有惊喜哦)但在画这朵玫瑰花之前,先来一个基础的图形, ...
随机推荐
- Thread同步
今天本人给大家讲解一下多线程的线程同步,如有不对的或者讲的不好的可以多多提出,我会进行相应的更改,先提前感谢提出意见的各位了!!! 开始说线程同步前先来个小案例: 案例启:所有的类都在Demo01中, ...
- button控件根据文本自适应
2020-03-12 每日一例第5天 1.添加按钮1和label.textbox控件,并修改相应的text值: 2.修改textBox1的TextChanged事件并输入代码: button1.Tex ...
- C 和 C++语言中的内存拷贝函数memcpy()
memcpy指的是C和C++使用的内存拷贝函数 函数原型为void *memcpy(void *destin, void *source, unsigned n): 函数的功能是从源内存地址的起始位置 ...
- H5新特性之语义化标签
一.为什么要增加新的语义化标签 在HTML 5出来之前,我们用div来表示章节,但是这些div都没有实际意义,这样的布局方式使我们的结构不够清晰,于是语义化标签应运而生. 二.何为语义化标签 顾名思义 ...
- ubuntu 16.04服务器安装apache2 + php + mysql
具体操作 第一步:安装mysql apt-get install mysql-server mysql-client 第二步:安装apache2 apt-get install apache2 第三步 ...
- 读书笔记——莫提默·J.艾德勒&查尔斯·范多伦(美)《如何阅读一本书》
第一篇 阅读的层次 第一章 阅读的活力与艺术 阅读的目标:娱乐.获得资讯.增进理解力这本书是为那些想把读书的主要目的当作是增进理解能力的人而写.何谓阅读艺术?这是一个凭借着头脑运作,除了玩味读物中的一 ...
- Journal of Proteome Research | SAAVpedia: identification, functional annotation, and retrieval of single amino acid variants for proteogenomic interpretation | SAAV的识别、功能注释和检索 | (解读人:徐洪凯)
文献名:SAAVpedia: identification, functional annotation, and retrieval of single amino acid variants fo ...
- IE 跨域session丢失问题
在测试时发现session 取不到值,以为是session赋值除了问题,但是在Chrome中一切正常,故排除此原因.那问题肯定出在浏览器身上里.于是一步一步调试,发现在IE中,如果页面跳转,Sessi ...
- 2020kali浏览器汉化等配置
0.修改搜索引擎 1. 2. 3.点击左侧搜索,输入language因为我已经修改为中文所以没有查询到结果 4点击搜索更多语言(未汉化未英文)找到chinese后添加 5.要将chinese上移到第一 ...
- Django-jwt token生成源码分析
一. 认证的发展历程简介 这里真的很简单的提一下认证的发展历程.以前大都是采用cookie.session的形式来进行客户端的认证,带来的结果就是在数据库上大量存储session导致数据库压力增大,大 ...