Opencv笔记(十三)——图像的梯度
目标
- 认识图像梯度、边界
- 学习函数cv2.Sobel(),cv2.Schar(),cv2.Laplacian()
原理
图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导。OpenCV提供三种类型的梯度滤波器或高通滤波器,Sobel,Scharr和Laplacian.
Sobel 和 Scharr 算子
Sobel算子是结合了高斯平滑与微分运算的结合方法,所以它的抗噪声能力很强,其是普通一阶差分,是基于寻找梯度强度。每一个算子分别对应这x和y这两个方向的模板,故在代码中要分别在两个方向上处理,最后用cv2.addWeighted(...)函数将其组合起来。
Sobel算子
Sobel函数原型如下:
cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])
前四个是必须的参数:
- 第一个参数是需要处理的图像;
- 第二个参数是图像的深度(数据类型),-1表示采用的是与原图像相同的深度。目标图像的深度必须大于等于原图像的深度;
- dx和dy表示的是求导的阶数,0表示这个方向上没有求导,一般为0、1、2;
其后是可选的参数:
- ksize是Sobel算子的大小,必须为1、3、5、7。如果ksize=-1,那么一个3*3的scharr滤波器会被使用;
- delta是一个可选的增量,将会加到最终的dst中,同样,默认情况下没有额外的值加到dst中;
- borderType是判断图像边界的模式。这个参数默认值为cv2.BORDER_DEFAULT;
Laplacian算子
拉普拉斯算子是常用的边缘检测算子,它是各向同性的二阶导数。
计算公式
卷积核
代码实践
Sobel算子:
# coding=utf-8
import cv2
import numpy as np
img = cv2.imread("/home/wl/1.jpg", 0)
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
absX = cv2.convertScaleAbs(x) # 转回uint8
absY = cv2.convertScaleAbs(y)
dst = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
while(1):
cv2.imshow("absX", absX)
cv2.imshow("absY", absY)
cv2.imshow("Result", dst)
k = cv2.waitKey(1) & 0XFF
if k==ord('q'):
break;
cv2.destroyAllWindows()
原图:
效果图:
Laplacian算子:
# coding=utf-8
import cv2
import numpy as np
img = cv2.imread("/home/wl/1.jpg", 0)
laplacian=cv2.Laplacian(img,cv2.CV_64F)
dst = cv2.convertScaleAbs(laplacian) #转回uint8
while(1):
cv2.imshow("Result",dst)
k = cv2.waitKey(1) & 0XFF
if k==ord('q'):
break;
cv2.destroyAllWindows()
效果图:
注意点
代码看了的话,会发现我们的sobel函数的第二个参数(数据类型)会换成cv2.CV_16S或cv2.CV_64F,最后再变回uint8。这是因为从黑到白的边界点的导数是正数,而从白到黑是负数,如果还是使用uint8,那么所有的负数都会变为0,即被截断。
Opencv笔记(十三)——图像的梯度的更多相关文章
- opencv-学习笔记(6)图像梯度Sobel以及canny边缘检测
opencv-学习笔记(6)图像梯度Sobel以及canny边缘检测 这章讲了 sobel算子 scharr算子 Laplacion拉普拉斯算子 图像深度问题 Canny检测 图像梯度 sobel算子 ...
- opencv笔记2:图像ROI
time:2015年 10月 03日 星期六 12:03:45 CST # opencv笔记2:图像ROI ROI ROI意思是Region Of Interests,感兴趣区域,是一个图中的一个子区 ...
- Python下opencv使用笔记(图像频域滤波与傅里叶变换)
Python下opencv使用笔记(图像频域滤波与傅里叶变换) 转载一只程序喵 最后发布于2018-04-06 19:07:26 阅读数 1654 收藏 展开 本文转载自 https://blog ...
- opencv笔记6:角点检测
time:2015年10月09日 星期五 23时11分58秒 # opencv笔记6:角点检测 update:从角点检测,学习图像的特征,这是后续图像跟踪.图像匹配的基础. 角点检测是什么鬼?前面一篇 ...
- opencv笔记4:模板运算和常见滤波操作
time:2015年10月04日 星期日 00时00分27秒 # opencv笔记4:模板运算和常见滤波操作 这一篇主要是学习模板运算,了解各种模板运算的运算过程和分类,理论方面主要参考<图像工 ...
- OpenCV笔记大集锦(转载)
整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的.如果有好的资源,也欢迎介绍和分享. 1:OpenCV学习笔记 作者:CSDN数量:55篇博文网址: ...
- opencv笔记5:频域和空域的一点理解
time:2015年10月06日 星期二 12时14分51秒 # opencv笔记5:频域和空域的一点理解 空间域和频率域 傅立叶变换是f(t)乘以正弦项的展开,正弦项的频率由u(其实是miu)的值决 ...
- opencv笔记3:trackbar简单使用
time:2015年 10月 03日 星期六 13:54:17 CST # opencv笔记3:trackbar简单使用 当需要测试某变量的一系列取值取值会产生什么结果时,适合用trackbar.看起 ...
- opencv笔记1:opencv的基本模块,以及环境搭建
opencv笔记1:opencv的基本模块,以及环境搭建 安装系统 使用fedora22-workstation-x86_64 安装opencv sudo dnf install opencv-dev ...
- python3.4学习笔记(十三) 网络爬虫实例代码,使用pyspider抓取多牛投资吧里面的文章信息,抓取政府网新闻内容
python3.4学习笔记(十三) 网络爬虫实例代码,使用pyspider抓取多牛投资吧里面的文章信息PySpider:一个国人编写的强大的网络爬虫系统并带有强大的WebUI,采用Python语言编写 ...
随机推荐
- 菜鸟理解Lamdba表达式
简单的说就是Java 1.8后给出个简化代码的方式, Java面向对象过分强调必须通过对象的形式来完成任务,而函数思想则尽量忽略面向对象的复杂语法,强调做什么,而不是以什么形式做. 举个栗子! 首先创 ...
- 第二届中国“AI+”创新创业大赛完美收官,京东云赛道硕果累累
聚焦南京产业发展核心诉求,京东云携手南京政府构建的"平台+生态+赋能"的产业体系,搭建产业创新云平台,以人工智能产业创新链要素补齐为核心,围绕"研.产.供.销.服&quo ...
- Android群英传神兵利器读书笔记——第一章:程序员小窝——搭建高效的开发环境
1.1 搭建高效的开发环境之操作系统 1.2 搭建开发环境之高效配置 基本环境配置 基本开发工具 1.3 搭建程序员的博客平台 开发者为什么要写作 写作平台 第三方博客平台 自建博客平台 开发论坛 1 ...
- java正则 读取html 获取标题/超链接/链接文本/内容
java正则 读取html 获取标题/超链接/链接文本/内容 参考链接:http://yijianfengvip.blog.163.com/blog/static/175273432201142785 ...
- 《C Primer Plus》- 第二章 C语言概述
本笔记写于2020年1月27日. 本系列文章参考的是<C Primer Plus>(第六版),其中里面会有笔者自己的相关补充. 以下示例均运行于macOS Catalina 10.15.2 ...
- EF Core开发模式之Code First
Code First顾名思义,代码为先.首先编写完相关的实体类及DbContext派生类,然后通过映射关系自动在数据库中完成数据库表的创建. 本例中创建一个班级和学生的管理,主要有班级类MyClass ...
- UML-迭代2:更多模式
1.之前的初始阶段+细化阶段中的迭代1讲述的是广泛使用的基本分析和对象设计技术.而迭代2中,案例研究只强调: 对象设计和模式: 1).基本对象设计(基于职责和GRASP) 2).使用模式来创建稳固的设 ...
- Maven - No plugin found for prefix 'tomcat7' in the current project
问题发现: 在构建Maven项目的时候,出现了No plugin found for prefix 'tomcat7' in the current project的错误. 是需要在Maven的Pom ...
- Android 消息推送流程机制
1.引言 所谓的消息推送就是从服务器端向移动终端发送连接,传输一定的信息.比如一些新闻客户端,每隔一段时间收到一条或者多条通知,这就是从服务器端传来的推送消息:还比如常用的一些IM软件如微信.GTal ...
- Python说文解字_详解元类
1.深入理解一切接对象: 1.1 什么是类和对象? 首先明白元类之前要明白什么叫做类.类是面向对象object oriented programming的重要概念.在面向对象中类和对象是最基本的两个概 ...