【转】Hive 基础之:分区、桶、Sort Merge Bucket Join
Hive 已是目前业界最为通用、廉价的构建大数据时代数据仓库的解决方案了,虽然也有 Impala 等后起之秀,但目前从功能、稳定性等方面来说,Hive 的地位尚不可撼动。
其实这篇博文主要是想聊聊 SMB join 的,Join 是整个 MR/Hive 最为核心的部分之一,是每个 Hadoop/Hive/DW RD 必须掌握的部分,之前也有几篇文章聊到过 MR/Hive 中的 join,其实底层都是相同的,只是上层做了些封装而已,如果你还不了解究竟 Join 有哪些方式,以及底层怎么实现的,请参考如下链接:
http://my.oschina.net/leejun2005/blog/95186 MapReduce 中的两表 join 几种方案简介
http://my.oschina.net/leejun2005/blog/111963 Hadoop 多表 join:map side join 范例
http://my.oschina.net/leejun2005/blog/158491 Hive & Performance 学习笔记
在最后一篇链接中,有这么两副图:
前面两个很好理解,基本上每个人都会接触到,但最后一种,可能有同学还是比较陌生,SMB 存在的目的主要是为了解决大表与大表间的 Join 问题,分桶其实就是把大表化成了“小表”,然后 Map-Side Join 解决之,这是典型的分而治之的思想。在聊 SMB Join 之前,我们还是先复习下相关的基础概念。
1、Hive 分区表
在Hive Select查询中一般会扫描整个表内容,会消耗很多时间做没必要的工作。有时候只需要扫描表中关心的一部分数据,因此建表时引入了partition概念。分区表指的是在创建表时指定的partition的分区空间。
Hive可以对数据按照某列或者某些列进行分区管理,所谓分区我们可以拿下面的例子进行解释。
当前互联网应用每天都要存储大量的日志文件,几G、几十G甚至更大都是有可能。存储日志,其中必然有个属性是日志产生的日期。在产生分区时,就可以按照日志产生的日期列进行划分。把每一天的日志当作一个分区。
将数据组织成分区,主要可以提高数据的查询速度。至于用户存储的每一条记录到底放到哪个分区,由用户决定。即用户在加载数据的时候必须显示的指定该部分数据放到哪个分区。
1.1 实现细节
1、一个表可以拥有一个或者多个分区,每个分区以文件夹的形式单独存在表文件夹的目录下。
2、表和列名不区分大小写。
3、分区是以字段的形式在表结构中存在,通过describe table命令可以查看到字段存在, 但是该字段不存放实际的数据内容,仅仅是分区的表示(伪列) 。
1.2 语法
1. 创建一个分区表,以 ds 为分区列:
create table invites (id int, name string) partitioned by (ds string) row format delimited fields terminated by 't' stored as textfile;
2. 将数据添加到时间为 2013-08-16 这个分区中:
load data local inpath '/home/hadoop/Desktop/data.txt' overwrite into table invites partition (ds='2013-08-16');
3. 将数据添加到时间为 2013-08-20 这个分区中:
load data local inpath '/home/hadoop/Desktop/data.txt' overwrite into table invites partition (ds='2013-08-20');
4. 从一个分区中查询数据:
select * from invites where ds ='2013-08-12';
5. 往一个分区表的某一个分区中添加数据:
insert overwrite table invites partition (ds='2013-08-12') select id,max(name) from test group by id;
可以查看分区的具体情况,使用命令:
hadoop fs -ls /home/hadoop.hive/warehouse/invites
或者:
show partitions tablename;
2、Hive 桶
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分。Hive也是 针对某一列进行桶的组织。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。
把表(或者分区)组织成桶(Bucket)有两个理由:
(1)获得更高的查询处理效率。桶为表加上了额外的结构,Hive 在处理有些查询时能利用这个结构。具体而言,连接两个在(包含连接列的)相同列上划分了桶的表,可以使用 Map 端连接 (Map-side join)高效的实现。比如JOIN操作。对于JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。
(2)使取样(sampling)更高效。在处理大规模数据集时,在开发和修改查询的阶段,如果能在数据集的一小部分数据上试运行查询,会带来很多方便。
1. 创建带桶的 table :
create table bucketed_user(id int,name string) clustered by (id) sorted by(name) into 4 buckets row format delimited fields terminated by '\t' stored as textfile;
首先,我们来看如何告诉Hive—个表应该被划分成桶。我们使用CLUSTERED BY 子句来指定划分桶所用的列和要划分的桶的个数:
CREATE TABLE bucketed_user (id INT) name STRING)
CLUSTERED BY (id) INTO 4 BUCKETS;
在这里,我们使用用户ID来确定如何划分桶(Hive使用对值进行哈希并将结果除 以桶的个数取余数。这样,任何一桶里都会有一个随机的用户集合(PS:其实也能说是随机,不是吗?)。
对于map端连接的情况,两个表以相同方式划分桶。处理左边表内某个桶的 mapper知道右边表内相匹配的行在对应的桶内。因此,mapper只需要获取那个桶 (这只是右边表内存储数据的一小部分)即可进行连接。这一优化方法并不一定要求 两个表必须桶的个数相同,两个表的桶个数是倍数关系也可以。用HiveQL对两个划分了桶的表进行连接,可参见“map连接”部分(P400)。
桶中的数据可以根据一个或多个列另外进行排序。由于这样对每个桶的连接变成了高效的归并排序(merge-sort), 因此可以进一步提升map端连接的效率。以下语法声明一个表使其使用排序桶:
CREATE TABLE bucketed_users (id INT, name STRING)
CLUSTERED BY (id) SORTED BY (id ASC) INTO 4 BUCKETS;
我们如何保证表中的数据都划分成桶了呢?把在Hive外生成的数据加载到划分成 桶的表中,当然是可以的。其实让Hive来划分桶更容易。这一操作通常针对已有的表。
Hive并不检查数据文件中的桶是否和表定义中的桶一致(无论是对于桶 的数量或用于划分桶的列)。如果两者不匹配,在査询时可能会碰到错 误或未定义的结果。因此,建议让Hive来进行划分桶的操作。
有一个没有划分桶的用户表:
hive> SELECT * FROM users;
0 Nat
2 Doe
B Kay
4 Ann
2. 强制多个 reduce 进行输出:
要向分桶表中填充成员,需要将 hive.enforce.bucketing 属性设置为 true。①这 样,Hive 就知道用表定义中声明的数量来创建桶。然后使用 INSERT 命令即可。需要注意的是: clustered by和sorted by不会影响数据的导入,这意味着,用户必须自己负责数据如何如何导入,包括数据的分桶和排序。
'set hive.enforce.bucketing = true' 可以自动控制上一轮reduce的数量从而适配bucket的个数,当然,用户也可以自主设置mapred.reduce.tasks去适配bucket个数,推荐使用'set hive.enforce.bucketing = true'
3. 往表中插入数据:
INSERT OVERWRITE TABLE bucketed_users SELECT * FROM users;
物理上,每个桶就是表(或分区)目录里的一个文件。它的文件名并不重要,但是桶 n 是按照字典序排列的第 n 个文件。事实上,桶对应于 MapReduce 的输出文件分区:一个作业产生的桶(输出文件)和reduce任务个数相同。我们可以通过查看刚才 创建的bucketd_users表的布局来了解这一情况。运行如下命令:
4. 查看表的结构:
hive> dfs -ls /user/hive/warehouse/bucketed_users;
将显示有4个新建的文件。文件名如下(文件名包含时间戳,由Hive产生,因此 每次运行都会改变):
attempt_201005221636_0016_r_000000_0
attempt_201005221636_0016_r-000001_0
attempt_201005221636_0016_r_000002_0
attempt_201005221636_0016_r_000003_0
第一个桶里包括用户IDO和4,因为一个INT的哈希值就是这个整数本身,在这里 除以桶数(4)以后的余数:②
5. 读取数据,看每一个文件的数据:
hive> dfs -cat /user/hive/warehouse/bucketed_users/*0_0;
0 Nat
4 Ann
用TABLESAMPLE子句对表进行取样,我们可以获得相同的结果。这个子句会将 查询限定在表的一部分桶内,而不是使用整个表:
6. 对桶中的数据进行采样:
hive> SELECT * FROM bucketed_users
> TABLESAMPLE(BUCKET 1 OUT OF 4 ON id);
0 Nat
4 Ann
桶的个数从1开始计数。因此,前面的查询从4个桶的第一个中获取所有的用户。 对于一个大规模的、均匀分布的数据集,这会返回表中约四分之一的数据行。我们 也可以用其他比例对若干个桶进行取样(因为取样并不是一个精确的操作,因此这个 比例不一定要是桶数的整数倍)。例如,下面的查询返回一半的桶:
7. 查询一半返回的桶数:
hive> SELECT * FROM bucketed_users
> TABLESAMPLE(BUCKET 1 OUT OF 2 ON id);
0 Nat
4 Ann
2 Joe
因为查询只需要读取和TABLESAMPLE子句匹配的桶,所以取样分桶表是非常高效 的操作。如果使用rand()函数对没有划分成桶的表进行取样,即使只需要读取很 小一部分样本,也要扫描整个输入数据集:
hive〉 SELECT * FROM users
> TABLESAMPLE(BUCKET 1 OUT OF 4 ON rand());
2 Doe
①从Hive 0.6.0开始,对以前的版本,必须把mapred.reduce .tasks设为表中要填 充的桶的个数。如果桶是排序的,还需要把hive.enforce.sorting设为true。
②显式原始文件时,因为分隔字符是一个不能打印的控制字符,因此字段都挤在一起。
3、举个完整的小例子:
(1)建student & student1 表:
1 |
create table student(id INT , age INT , name STRING) |
2 |
partitioned by (stat_date STRING) |
3 |
clustered by (id) sorted by (age) into 2 buckets |
4 |
row format delimited fields terminated by ',' ; |
5 |
6 |
create table student1(id INT , age INT , name STRING) |
7 |
partitioned by (stat_date STRING) |
8 |
clustered by (id) sorted by (age) into 2 buckets |
9 |
row format delimited fields terminated by ',' ; |
(2)设置环境变量:
set hive.enforce.bucketing = true;
(3)插入数据:
01 |
cat bucket.txt |
02 |
03 |
1,20,zxm |
04 |
2,21,ljz |
05 |
3,19,cds |
06 |
4,18,mac |
07 |
5,22,android |
08 |
6,23,symbian |
09 |
7,25,wp |
10 |
11 |
LOAD DATA local INPATH '/home/lijun/bucket.txt' OVERWRITE INTO TABLE student partition(stat_date= "20120802" ); |
12 |
13 |
from student |
14 |
insert overwrite table student1 partition(stat_date= "20120802" ) |
15 |
select id,age, name where stat_date= "20120802" sort by age; |
(4)查看文件目录:
hadoop fs -ls /hive/warehouse/test.db/student1/stat_date=20120802
Found 2 items
-rw-r--r-- 2 lijun supergroup 31 2013-11-24 19:16 /hive/warehouse/test.db/student1/stat_date=20120802/000000_0
-rw-r--r-- 2 lijun supergroup 39 2013-11-24 19:16 /hive/warehouse/test.db/student1/stat_date=20120802/000001_0
(5)查看sampling数据:
hive> select * from student1 tablesample(bucket 1 out of 2 on id);
Total MapReduce jobs = 1
Launching Job 1 out of 1
.......
OK
4 18 mac 20120802
2 21 ljz 20120802
6 23 symbian 20120802
Time taken: 20.608 seconds
注:tablesample是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y)
y必须是table总bucket数的倍数或者因子。hive根据y的大小,决定抽样的比例。例如,table总共分了64份,当y=32时,抽取(64/32=)2个bucket的数据,当y=128时,抽取(64/128=)1/2个bucket的数据。x表示从哪个bucket开始抽取。例如,table总bucket数为32,tablesample(bucket 3 out of 16),表示总共抽取(32/16=)2个bucket的数据,分别为第3个bucket和第(3+16=)19个bucket的数据。
4、Refer:
http://rdc.taobao.org/?p=1457 从MR到Hive – 一次迁移的过程
http://blog.573114.com/Blog/Html/A031/516857.html Hadoop权威指南 第12章 Hive简介 P384
http://superlxw1234.iteye.com/blog/1545150 hive--Sort Merge Bucket Map Join
http://blog.csdn.net/yfkiss/article/details/7816916
【转】Hive 基础之:分区、桶、Sort Merge Bucket Join的更多相关文章
- hive基础总结(面试常用)
hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行. Metastore (hiv ...
- HIVE—索引、分区和分桶的区别
一.索引 简介 Hive支持索引,但是Hive的索引与关系型数据库中的索引并不相同,比如,Hive不支持主键或者外键. Hive索引可以建立在表中的某些列上,以提升一些操作的效率,例如减少MapRed ...
- 【Hive学习之五】Hive 参数&动态分区&分桶
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 ...
- Hive基础讲解
一.Hive背景介绍 Hive最初是Facebook为了满足对海量社交网络数据的管理和机器学习的需求而产生和发展的.马云在退休的时候说互联网现在进入了大数据时代,大数据是现在互联网的趋势,而had ...
- [转帖]Hive基础(一)
Hive基础(一) 2018-12-19 15:35:03 人间怪物 阅读数 234 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接 ...
- 《Programming Hive》读书笔记(两)Hive基础知识
<Programming Hive>读书笔记(两)Hive基础知识 :第一遍读是浏览.建立知识索引,由于有些知识不一定能用到,知道就好.感兴趣的部分能够多研究. 以后用的时候再具体看.并结 ...
- Hive为什么要分桶
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分.Hive也是针对某一列进行桶的组织.Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记 ...
- hive 分区表和分桶表
1.创建分区表 hive> create table weather_list(year int,data int) partitioned by (createtime string,area ...
- Hive学习笔记——Hive中的分桶
对于每一个表(table)或者分区, Hive可以进一步组织成桶,也就是说桶是更为细粒度的数据范围划分.Hive也是针对某一列进行桶的组织.Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记 ...
随机推荐
- 1Z0-053 争议题目解析704
1Z0-053 争议题目解析704 考试科目:1Z0-053 题库版本:V13.02 题库中原题为: 704.View the Exhibit and examine the data manipul ...
- ssh整合问题总结--使用struts2+Ajax+jquery验证用户名是否已被注册
在用户模块中的用户注册需求上,通常要进行用户名是否已被注册的验证,今天正好写了这个需求,把详细代码和所遇到的问题贴过来.在使用struts2+ajax时候,通常我们会返回json类型的数据,但是像上面 ...
- 学习Linux下s3c2440的USB鼠标驱动笔记
1.ARM-Linux下USB驱动程序开发1.1.1.linux下USB配置:*********(MassStorage:存储设备)********************************** ...
- SQL Server 通过重建方式还原 master 数据库
1,备份master数据库 2,停止服务,直接删除master数据文件 3,用安装程序重建master数据文件 控制台下进入安装目录就不说了 D:\SetUp\sqlserver2012>Set ...
- 1.Java网络编程之概述
黑马程序员_毕向东_Java基础视频教程第23天-01-网络编程(概述)学习笔记 网络通讯三要素: 1.IP地址 I.网络中设备的标识 II.不易记忆,可用主机名 www 万维网组织,baidu主机 ...
- springmvc原理
今天面试碰到一个特别恶心的公司面试官.是一个金融公司,过去后告诉我2点上班,带我去见经理.经理找人面试,看起来没有hr,经理直接看简历招人.经理上来就问我是xxx大学的,我说是,然后等面试官.面试官来 ...
- jQuery-1.9.1源码分析系列(十四) 一些jQuery工具
为了给下一章分析动画处理做准备,先来看一下一些工具.其中队列工具在动画处理中被经常使用. jQuery.fn. queue(([ queueName ] [, newQueue ]) || ([ qu ...
- log4net的使用
1.0 下载并引用 log4net.dll 2.0 修改Web.config <configuration> <configSections> <section name ...
- SQL语句分组排序,多表关联排序
SQL语句分组排序,多表关联排序总结几种常见的方法: 案例一: 在查询结果中按人数降序排列,若人数相同,则按课程号升序排列? 分析:单个表内的多个字段排序,一般可以直接用逗号分割实现. select ...
- EF架构~EF异步改造之路~仓储接口的改造~续
回到目录 返回异步与并行目录 在写完仓储接口的改造改造后,总觉得有个代码的坏味道,这种味道源于它的DRP,即重复的代码太多了,即异步操作和同步操作其实只是在insert,update和delete上有 ...