2018 ICPC Pacific Northwest Regional Contest I-Inversions 题解
题目链接: 2018 ICPC Pacific Northwest Regional Contest - I-Inversions
题意
给出一个长度为\(n\)的序列,其中的数字介于0-k之间,为0表示这个位置是空的。现在可以在这些空的位置上任意填入1-k之间的数字(可以重复)。问最多可以总共有多少对逆序对。(如果\(i<j,p_i>p_j\),则称\((i,j)\)是一对逆序对)
\(1\leq n\leq 2*10^5,\ 1\leq k\leq 100\)
思路
第一步,先证明最优的填入的序列一定是非降序的。这里可以用反证法。假设\(a\lt b\),对于序列\(seq_1,a,seq_2,b,seq_3\),这里seq表示一段数字。如果我们交换a和b的位置,可以发现,a原本的贡献中:
- \(seq_1\)里比\(a\)大的,保留了下来。
- \(seq_2\)里比\(a\)小的,必定也比\(b\)小。
- \(seq_3\)里比\(a\)小的,保留了下来。
同样地,在b原本的贡献中:
- \(seq_1\)里比\(b\)大的,保留了下来。
- \(seq_2\)里比\(b\)大的,必定也比\(a\)大。
- \(seq_3\)里比\(b\)大的,保留了下来。
因此,用非降序的序列来填空,至少不会比这个序列的其他排列方式差,也就可以认为这是最优的了。
这里稍微提一下,如果用相似的方法,无法证明非升序是最优的。
第二步,明确算法过程需要什么数据。这里需要用到的有:
- 原序列的:
- 对于所有的数字1-k,每个位置与前面可组成的逆序对数。
- 已产生的所有逆序对数。
- 填入空位的数:
- 可与原序列产生的逆序对数
- 填入序列之间产生的逆序对数。(大概是一个等差数列求和再减去相同部分)
然后是核心部分。观察到k很小,所以我们枚举从左到右,从大到小填入序列。具体方法如下:
- 枚举从\(k到1\)的每个数字\(val\)。然后枚举任意连续的空位填入一串val。这样直接做的复杂度是\(O(n^2)\),所以需要一些优化。
- 首先用前缀和、差分把计算连续串的复杂度压到\(O(n)\)建立,\(O(1)\)查询。
- 然后再额外维护一个dp数组,记录对于这个val的情况,这样在取到更优值的时候,这个首部以前的地方就可以保证后续也可用。这样首部随着枚举尾部向后迁移,更新dp数组的复杂度也从\(O(n^2)\)降到了\(O(n)\)。
- 最后再用这个额外的dp数组去更新答案的dp数组,直接覆盖。算法执行完,就可以得到填空与原序列产生的总贡献,和填空序列里不变的子序列减少的贡献。
- 最终答案就是原序列的贡献+填空与原序列产生的贡献+填空之间产生的贡献(等差数列求和再减去不变的子序列减少的贡献,代码中为方便计算,减去的部分在填空与原序列产生的贡献中提前计算了)。
这里因为我自己也还没有理解透彻,只停留在AC的程度,也有题目比较复杂的原因,可能讲的不够清楚。具体需要看代码里的一些注释辅助理解。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=2e5+10;
const int maxk=1e2+10;
const ll inf=1e18;
int n,k;
int seq[maxn];
int preGt[maxn][maxk];//i,j: 下标从1到i这么多个大于j的数
int cnt[maxk];//至今有多少个数大于i
ll dp[maxn];//在i之前填空的贡献,减去相等序列本应有的贡献
ll curdp[maxn];
ll presum[maxn];//前缀和
ll getsum(ll num){
//1...n等差数列求和
return num*(num+1)/2;
}
int main(){
// freopen("in.txt","r",stdin);
ios::sync_with_stdio(false);
cin>>n>>k;
int empty=0;
ll ori=0;//原序列的逆序对数
for(int i=1;i<=n;++i){
cin>>seq[i];
if(seq[i]==0){
++empty;
}
else{
for(int j=0;j<seq[i];++j)
++cnt[j];
ori+=cnt[seq[i]];
}
for(int j=0;j<=k;++j)
preGt[i][j]=cnt[j];
}
//////////////////////
for(int i=1;i<=n;++i)
dp[i]=-inf;
for(int val=k;val>=1;--val){
//先用大的数填空
int tot=0;
ll sum=0;//要注意的是,这里的sum是前缀和
for(int i=1;i<=n;++i){
if(seq[i]) continue;
//加上i左边比val大的数
sum+=preGt[i][val];
//再加上i右边比val小的数,这里用总数-比val-1大的数量=比val小的数量
//然后再总的减掉左边的,就是右边的。
sum+=(preGt[n][0]-preGt[n][val-1])-(preGt[i][0]-preGt[i][val-1]);
presum[++tot]=sum;
}
int emptyR=1;
int emptyL=1;
int curL=1;
int curst=1;
//枚举这串val填空的尾部
for(int ed=1;ed<=n;++ed){
ll mx=-inf;
if(seq[ed]) continue;
curL=emptyL;
for(int st=curst;st<=ed;++st){
if(seq[st]) continue;
//从上一个状态加上,L到R之间填空val的贡献,减去这串本该下降的空位产生的贡献。
//例如2,1贡献了一个逆序对,但2,2就不贡献了。然后对比已有状态看是否更优。
ll tmp=dp[curL-1]+(presum[emptyR]-presum[curL-1])-getsum(emptyR-curL);
if(tmp<mx) break;
if(tmp>mx){
mx=tmp;
emptyL=curL;
curst=st;
}
++curL;
}
curdp[emptyR]=max(dp[emptyR],mx);
++emptyR;
}
swap(dp,curdp);
}
cout<<ori+dp[empty]+getsum(empty-1)<<'\n';
return 0;
}
2018 ICPC Pacific Northwest Regional Contest I-Inversions 题解的更多相关文章
- Contest Setting 2018 ICPC Pacific Northwest Regional Contest dp
题目:https://vj.69fa.cn/12703be72f729288b4cced17e2501850?v=1552995458 dp这个题目网上说是dp+离散化这个题目要对这些数字先处理然后进 ...
- 2016-2017 ACM-ICPC Pacific Northwest Regional Contest (Div. 2) 题解
[题目链接] A - Alphabet 最长公共子序列.保留最长公共子序列,剩余的删除或者补足即可. #include <bits/stdc++.h> using namespace st ...
- 2018-2019 ACM-ICPC Pacific Northwest Regional Contest (Div. 1)
2018-2019 ACM-ICPC Pacific Northwest Regional Contest (Div. 1) 思路: A Exam 思路:水题 代码: #include<bits ...
- 2018 ACM-ICPC Asia Beijing Regional Contest (部分题解)
摘要 本文主要给出了2018 ACM-ICPC Asia Beijing Regional Contest的部分题解,意即熟悉区域赛题型,保持比赛感觉. Jin Yong’s Wukong Ranki ...
- The 2018 ACM-ICPC Asia Qingdao Regional Contest(部分题解)
摘要: 本文是The 2018 ACM-ICPC Asia Qingdao Regional Contest(青岛现场赛)的部分解题报告,给出了出题率较高的几道题的题解,希望熟悉区域赛的题型,进而对其 ...
- 2018-2019 ACM-ICPC Pacific Northwest Regional Contest (Div. 1) Solution
A:Exam Solved. 温暖的签. #include<bits/stdc++.h> using namespace std; ; int k; char str1[maxn], st ...
- 2016-2017 ACM-ICPC Pacific Northwest Regional Contest (Div. 1) Solution
A:Alphabet Solved. 签. #include<bits/stdc++.h> using namespace std; ]; ]; int main(){ scanf(); ...
- 2015-2016 ACM-ICPC Pacific Northwest Regional Contest (Div. 2) S Surf
SurfNow that you've come to Florida and taken up surng, you love it! Of course, you've realized that ...
- 2018-2019 ACM-ICPC Pacific Northwest Regional Contest C Contest Setting(DP)
比赛链接:Contest Setting C题 题意:$n$道题目,每道题目难度为$ai$,选择$k$道难度不同的题目,有多少种选择方案.$1<=k<=n<=1000,1<=a ...
随机推荐
- Vue学习(2)---v-指令和组件
Vue中的指令 Vue中以带有前缀V-的属性被称为指令(带有v表示他们是Vue提供的特殊attribute) 一个v-bind的例子 <div id="app" v-bind ...
- PTA | 1016 部分A+B (15分)
正整数 A 的"DA(为 1 位整数)部分"定义为由 A 中所有 DA 组成的新整数 PA.例如:给定 A=3862767,DA=6,则 A 的"6 部分"PA ...
- 【mysql】用navicat无法连接mysql时解决方法
1.进入数据库 2.输入 GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY '123456' WITH GRANT OPTION;
- python 天天生鲜项目
python 天天生鲜项目 django版:https://github.com/Ivy-1996/fresh flask版:https://github.com/Ivy-1996/flask-fre ...
- C语言 加密解密
加密解密算法,对于一个未接触加密的人来说,这听起来是多么可望而不可及,但是只要我们理解了加密的本质,对于它就没那么陌生了,更难的是加密的算法,而不是加密这个术语上! 我们知道,文本文件是以ascii码 ...
- python3(三十一)metaclass
""" """ __author__ = 'shaozhiqi' # 动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而 ...
- java中JVM虚拟机内存模型详细说明
java中JVM虚拟机内存模型详细说明 2012-12-12 18:36:03| 分类: JAVA | 标签:java jvm 堆内存 虚拟机 |举报|字号 订阅 JVM的内部结构 ...
- 生成3D多棱柱的方法(3D立体图片)
先上一个效果图 主要运用的技术点就是 确认基点,确认每个盒子旋转的度数 3D变换 transform: rotateY(-360deg); 景深 perspective 3D舞台 transfor ...
- Linux U盘启动盘制作工具
近期由于自己使用的ubuntu系统一直出问题,想做一下启动盘帮助恢复系统和故障检测,以前一直是用ultraiso来进行写盘的,但是发现制作了几次后,失败的机率很高,主要有以下几种情况: 1.引导有问题 ...
- Threejs从入门到入门
前言threejs官网:https://threejs.org/ github各个版本:https://github.com/mrdoob/three.js/tags 版本更迭很快,我用的时候还是r9 ...