最先发布在csdn。本人原创。

https://blog.csdn.net/weixin_43906799/article/details/105510046

SJF算法:

最短作业优先(SJF)调度算法将每个进程与其下次 CPU 执行的长度关联起来。实际上,短进程/作业(要求服务时间最短)在实际情况中占有很大比例,为了使得它们优先执行,追求最少的平均等待时间时间、平均周转时间、平均带权周转时间。短作业优先可能导致长作业一直得不到处理)

总体构想

用python绘图这个想法产生于写调度图作业那段时间。当时就想着用python绘图,有两个想法trutle动态绘制调度图,还有就是现在所使用的方法。为什么用类写这次的作业,一是下次的作业可以直接继承SJF类,然后修改调度函数和排序函数就行了。二是用类写代码解决一类问题,代码看起来比较漂亮。

算法设计结构图

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

程序执行结果图

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

作业信息

作业名 到达时间 运行时间
A 0 5
B 1 4
C 2 1
D 4 2
E 5 1

基本思路

(1)类初始化:

对于进程调度SJF算法这个类,首先我们需要有成员变量,也就是大致所需要的成员变量。 基本也就需要这么多。

self.data = [] 存储进程
self.name = '' 进程名字
self.service_time = 0 服务时间
self.arrival_time = 0 到达时间
self.state = '' 初始状态
self.number = 0 进程数量
self.timeout = 0 超时限定
self.start = 0 开始时间
self.end = 0 结束时间
def __init__(self):
super(Solution, self).__init__()
# save tasks
self.data = []
self.name = ''
self.service_time = 0
self.arrival_time = 0
self.state = ''
self.number = 0
self.timeout = 0
self.start = 0
self.end = 0

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

(2)获取数据:

获取数据可以从文件(如.txt)中读入,亦可以从console读入。这里要求一个地方,就是数据的格式,名字,到达时间,服务时间。中间用空格分开。如下面表格:

name arrival_time service_time
A 0 5
B 1 4
C 2 1
D 4 2
E 5 1
def get_data_file(self):
with open('data.txt', "r", encoding="utf-8") as file:
for line in file.read().splitlines():
name, arrival_time, service_time = line.split()
# insert the task
self.insert_data(name, arrival_time, service_time)
file.close()
# initial queue
# sort first arrival_time and second service_time
self.data.sort(key=lambda x: (x['arrival_time'], x['service_time']))
# update and recode id
for i in range(self.number):
self.data[i]['index'] = i def get_data_input(self):
print('How many tasks do you want input?')
tasks_number = int(input('Please enter an integer of type int:'))
print('Please enter name and arrival_time and service_time of task')
print('such as:A 0 5')
for _ in range(tasks_number):
name, arrival_time, service_time = input('Please enter\n').split()
self.insert_data(name, arrival_time, service_time)
# initial queue
# sort first arrival_time and second service_time
self.data.sort(key=lambda x: (x['arrival_time'], x['service_time']))
# update and recode id
for i in range(self.number):
self.data[i]['index'] = i

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

(3)进行调度:

也就是设计算法,来实现SJF。基本的算法思路,就是维护一个优先队列。如图:

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

每次调度的时候根据需要,然后更新信息,更改作业的状态和到达和结束的时间。同时获取下一个或者多个作业,这里需要考虑到一种情况,就是当前时间片不能获取下一个作业,需要等待一段时间作业到达,才能执行。这种情况特判一下。然后执行排序,维护这个优先队列。

def implement(self):
'''start algorithm'''
# get first task
data = [self.data[0]]
# update the time of start
self.start = self.end = data[0]['arrival_time']
while data:
# update information
self.update_information(
data[0]['index'], self.end, self.end + data[0]['service_time'])
# get next task or tasks
data += self.get_next_data(data.pop(0)['index'], data)
# maintain the queue
data = self.sort_data(data)
self.data.sort(key=lambda x: x['id'])

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

(4)排序和信息更新:

对于排序的实现其实很简单,前面的结构图也已经展示了,对于SJF算法一共有两种排序方式,分别在不同的过程进行使用。数据更新就是更新原始的数据,包括计算状态,开始时间,结束时间,周转时间,平均周转时间等等。

def update_information(self, index, start, end):
self.data[index]['start'] = start
self.data[index]['end'] = end
self.data[index]['state'] = 'f'
self.data[index]['turnaround_time'] = end - \
self.data[index]['arrival_time']
self.data[index]['authorized_turnover_time'] = self.data[index]['turnaround_time'] / \
self.data[index]['service_time']
self.start = start
self.end = end
self.show_data_running(start, end, self.data[index])

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

(5)数据输出:

为什么要数据输出,其实这就是一个数据可视化的一种方法。也就是直观的表达各种信息。所以数据输出部分,就是自己设置自己的排版,布局,可以利用\t制表符来打表。

def show_data(self):
print("{:<6}{:<10}{:<10}{:<10}{:<6}{:<8}{:<7}{:<6}".format(
'name', 'arr_time', 'ser_time', 'state', '周转时间', '带权周转时间', 'start', 'end'))
for task in sorted(self.data, key=lambda x: x['id']):
print("{:<6}{:<10}{:<10}{:<10}{:<10}{:<14.2f}{:<7}{:<4}".format(
task['name'],
task['arrival_time'],
task['service_time'],
task['state'],
task['turnaround_time'],
task['authorized_turnover_time'],
task['start'],
task['end']))

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

(6)plt生成调度图展示:

利用python的第三方库,根据数据进行绘图,然后展示出好看的图片。

def init_image(self):
# size = 1000 * 500
plt.figure('SJF', figsize=(10, 5))
self.drow_image()
# setting xticks for 0 to self.end + 2
plt.xticks([i for i in range(self.end + 3)])
# setting title
plt.title('the time of task about SJF') plt.xlabel('')
plt.ylabel('tasks')
# setting yticks.such as A == 0
plt.yticks(self.get_y_ticks()[0], self.get_y_ticks()[1])

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

def drow_image(self):
for task in self.data:
# the time line of task from start to end
plt.plot([task['start'], task['end']],
[task['id'], task['id']],
label=task['name'],
lw=2)
# annotation of the key point
plt.plot([task['end'], task['end']],
[-1, task['id']],
'k--',
lw=1)
# legend
plt.legend(loc='best')

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

def set_ax(self):
ax = plt.gca() # 获取到当前坐标轴信息
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_color('none')
ax.xaxis.set_ticks_position('top') # 将X坐标轴移到上面
ax.invert_yaxis() # 反转Y坐标轴
ax.grid(True, linestyle='-.') # 网格

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

def show_image(self):
self.init_image()
self.set_ax()
plt.savefig('SJF.png', dpi=300)
plt.show()

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

程序执行过程:

支持两种输入方式,手动输入和数据导入。

数据导入:

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

原始数据

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

调度前:

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

调度中:

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

调度后:

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

生成调度图:

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

手动输入数据:

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

调度前

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动"> 调度中

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

调度后

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

生成调度图:

aaarticlea/gif;base64,R0lGODlhAQABAPABAP///wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==" alt="点击并拖拽以移动">

程序源代码:

# -*- coding: utf-8 -*-
# @Author: wfy
# @Date: 2020-04-10 15:31:44
# @Last Modified by: wfy
# @Last Modified time: 2020-04-14 13:46:31
import matplotlib.pyplot as plt class Solution():
"""to achieve SJF""" def __init__(self):
super(Solution, self).__init__()
# save tasks
self.data = []
self.name = ''
self.service_time = 0
self.arrival_time = 0
self.state = ''
self.number = 0
self.timeout = 0
self.start = 0
self.end = 0 def insert_data(self, name, arrival_time, service_time):
self.data.append({
'id': self.number,
'name': name,
'arrival_time': int(arrival_time),
'service_time': int(service_time),
'state': 'w',
'turnaround_time': 0,
'authorized_turnover_time': 0,
'start': 0,
'end': 0
})
self.timeout = max(self.timeout, int(arrival_time))
self.number += 1 def get_data_file(self):
with open('data.txt', "r", encoding="utf-8") as file:
for line in file.read().splitlines():
name, arrival_time, service_time = line.split()
# insert the task
self.insert_data(name, arrival_time, service_time)
file.close()
# initial queue
# sort first arrival_time and second service_time
self.data.sort(key=lambda x: (x['arrival_time'], x['service_time']))
# update and recode id
for i in range(self.number):
self.data[i]['index'] = i def get_data_input(self):
print('How many tasks do you want input?')
tasks_number = int(input('Please enter an integer of type int:'))
print('Please enter name and arrival_time and service_time of task')
print('such as:A 0 5')
for _ in range(tasks_number):
name, arrival_time, service_time = input('Please enter\n').split()
self.insert_data(name, arrival_time, service_time)
# initial queue
# sort first arrival_time and second service_time
self.data.sort(key=lambda x: (x['arrival_time'], x['service_time']))
# update and recode id
for i in range(self.number):
self.data[i]['index'] = i def show_data_running(self, start, end, data):
print('-'*40)
print("from {:} to {:}".format(start, end))
print("task name:{:}".format(data['name']))
print("task state:{:}\n".format('R')) def show_data(self):
print("{:<6}{:<10}{:<10}{:<10}{:<6}{:<8}{:<7}{:<6}".format(
'name', 'arr_time', 'ser_time', 'state', '周转时间', '带权周转时间', 'start', 'end'))
for task in sorted(self.data, key=lambda x: x['id']):
print("{:<6}{:<10}{:<10}{:<10}{:<10}{:<14.2f}{:<7}{:<4}".format(
task['name'],
task['arrival_time'],
task['service_time'],
task['state'],
task['turnaround_time'],
task['authorized_turnover_time'],
task['start'],
task['end'])) def cmp(self):
'''the method of sort'''
return lambda x: (x['service_time'], x['arrival_time'], x['index']) def sort_data(self, data):
return sorted(data, key=self.cmp()) def update_information(self, index, start, end):
self.data[index]['start'] = start
self.data[index]['end'] = end
self.data[index]['state'] = 'f'
self.data[index]['turnaround_time'] = end - \
self.data[index]['arrival_time']
self.data[index]['authorized_turnover_time'] = self.data[index]['turnaround_time'] / \
self.data[index]['service_time']
self.start = start
self.end = end
self.show_data_running(start, end, self.data[index]) def get_next_data(self, index, data):
# get tasks from the beginning to the end of the current task
result = [x for x in self.data if x['arrival_time'] <=
self.end and x['state'] == 'w' and x not in data]
if result or data:
return result
# no tasks entered at current time
for task in self.data:
if task['state'] == 'w':
self.start = self.end = task['arrival_time']
return [task]
return [] def implement(self):
'''start algorithm'''
# get first task
data = [self.data[0]]
# update the time of start
self.start = self.end = data[0]['arrival_time']
while data:
# update information
self.update_information(
data[0]['index'], self.end, self.end + data[0]['service_time'])
# get next task or tasks
data += self.get_next_data(data.pop(0)['index'], data)
# maintain the queue
data = self.sort_data(data)
self.data.sort(key=lambda x: x['id']) def get_y_ticks(self):
return [x['id'] for x in self.data] + [self.data[-1]['id'] + 1], [x['name'] for x in self.data] + [''] def init_image(self):
# size = 1000 * 500
plt.figure('SJF', figsize=(10, 5))
self.drow_image()
# setting xticks for 0 to self.end + 2
plt.xticks([i for i in range(self.end + 3)])
# setting title
plt.title('the time of task about SJF') plt.xlabel('')
plt.ylabel('tasks')
# setting yticks.such as A == 0
plt.yticks(self.get_y_ticks()[0], self.get_y_ticks()[1]) def drow_image(self):
for task in self.data:
# the time line of task from start to end
plt.plot([task['start'], task['end']],
[task['id'], task['id']],
label=task['name'],
lw=2)
# annotation of the key point
plt.plot([task['end'], task['end']],
[-1, task['id']],
'k--',
lw=1)
# legend
plt.legend(loc='best') def set_ax(self):
ax = plt.gca() # 获取到当前坐标轴信息
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_color('none')
ax.xaxis.set_ticks_position('top') # 将X坐标轴移到上面
ax.invert_yaxis() # 反转Y坐标轴
ax.grid(True, linestyle='-.') # 网格 def show_image(self):
self.init_image()
self.set_ax()
plt.savefig('SJF.png', dpi=300)
plt.show() def main(self):
if input('Do you want get data by file? y/Y or n/N\n') in ['y', 'Y']:
SJF.get_data_file()
else:
SJF.get_data_input()
SJF.show_data()
SJF.implement()
SJF.show_data()
SJF.show_image() if __name__ == '__main__':
try:
SJF = Solution()
SJF.main()
except Exception as e:
print('An exception', e)
else:
print('Finish')
finally:
print('finally')

利用python画出SJF调度图的更多相关文章

  1. 利用python画出动态高优先权优先调度

    之前写过一个文章. 利用python画出SJF调度图 动态高度优先权优先调度 动态优先权调度算法,以就绪队列中各个进程的优先权作为进程调度的依据.各个进程的优先权在创建进程时所赋予,随着进程的推进或其 ...

  2. python画出心形图

    程序员表达爱的方式真是多种多样.比如,用python来画一个心型,献给梦中的情人,代码如下: from turtle import * pensize(1) pencolor('red') fillc ...

  3. achartengine画出动态折线图

    achartengine画出动态折线图的效果最近有个项目需要用到实时曲线图,我也上网搜索了一下,最后还是选择使用achartengine这个现成的东西,毕竟自己再canvas一下实在是太麻烦,而且项目 ...

  4. 利用Graphviz画出图

    graphviz官网:http://www.graphviz.org/ 背景:有画图需要,之前见到别人用graphviz画,画出来的图漂亮,且自动帮你排版安排布局,所以自己想尝试用它画. 其中遇到的几 ...

  5. 利用LineRenderer画出一个圆,类似于lol中的攻击范围

    http://www.unity蛮牛.com/blog-5945-1409.html 本人大四狗,学unity半年有余,写此文章纯粹记录自己的心得. 废话不多说,进入主题.... 效果如图: 首先要理 ...

  6. 利用ggplot2画出各种漂亮图片详细教程

    1.Why use ggplot2 ggplot2是我见过最human friendly的画图软件,这得益于Leland Wilkinson在他的著作<The Grammar of Graphi ...

  7. 用初中代数结合python画出正方形

    在屏幕上打印类似下面的图形: 常规画正方形的算法: 这几乎是初学所有计算机语言时都会遇到的问题.算法都大致类似,就是找出打印规律然后用计算机语句表达出来.最常规的算法是:输入数字n就打印n行,首行和尾 ...

  8. 20行以内python代码画出各种减压图

    一.太阳花 看到一个很有意思的代码,你若安好,便是晴天!太阳花向你开~ 绘画效果如下: 代码如下: from turtle import * color('red', 'yellow') begin_ ...

  9. 利用R求分位数及画出箱型图

    1)数据集 data<-c(75.0,64.0,47.4,66.9,62.2,62.2,58.7,63.5,66.6,64.0,57.0,69.0,56.9,50.0,72.0) 默认是四分位: ...

随机推荐

  1. TCP漫谈之keepalive和time_wait

    TCP是一个有状态通讯协议,所谓的有状态是指通信过程中通信的双方各自维护连接的状态. 一.TCP keepalive 先简单回顾一下TCP连接建立和断开的整个过程.(这里主要考虑主流程,关于丢包.拥塞 ...

  2. .git/info/refs not valid: is this a git repository?

    今天用idea git提交的时候遇到了这个神奇的问题.git/info/refs not valid: is this a git repository? 看了很多网上的都不靠谱,最后自己乱点着找, ...

  3. 《Three.js 入门指南》2.3.1- 照相机 - 正交投影demo

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. Python:Day05-2

    面向对象进阶 在前面的章节我们已经了解了面向对象的入门知识,知道了如何定义类,如何创建对象以及如何给对象发消息.为了能够更好的使用面向对象编程思想进行程序开发,我们还需要对Python中的面向对象编程 ...

  5. java接口自动化(三) - 手工接口测试到自动化框架设计之鸟枪换炮

    1.简介 上一篇宏哥介绍完了接口用例设计,那么这一章节,宏哥就趁热打铁介绍一下,接口测试工具.然后小伙伴们或者童鞋们就可以用接口测试工具按照设计好的测试用例开始执行用例进行接口手动测试了.关于手动测试 ...

  6. php--php设计模式留存

    装饰者模式 <?php interface Decorator { public function display(); } class XiaoFang implements Decorato ...

  7. windows的注册表有什么用?

    注册表是什么 注册表是Microsoft Windows中的一个重要的数据库,用于存储系统和应用程序的设置信息.早在Windows 3.0推出OLE技术的时候,注册表就已经出现.随后推出的Window ...

  8. rest_framework-分页

    分页 from django.shortcuts import render # Create your views here. from rest_framework import serializ ...

  9. Android Visibility控件显示和隐藏

    Android控件显示和隐藏 visibility 可见(visible) XML文件:android:visibility="visible" Java代码:view.setVi ...

  10. Ubuntu 安装配置Dosbox

    1.安装dosbox sudo apt-get install dosbox 方法一: 2.挂载虚拟空间到dosbox的c盘 在linux终端输入dosbox,进入dosbox后输入 mount  c ...